Acta Optica Sinica, Volume. 45, Issue 18, 1801004(2025)
Research Progress and Development Trends on Hyperspectral Lidar Remote Sensing Technology (Invited)
Fig. 1. Representative HSL architectures. (a) Pre-emission spectral division; (b) post-reception spectral division
Fig. 2. Schematic and photographs of current HSL systems developed by different research institutions. (a) FGI’s portable 8-channel HSL[21]; (b) CAS’s HSL based on liquid crystal tunable filter (LCTF)[30]; (c) CAS’s ground-based 32-channel HSL[31]; (d) Wuhan University’s ground-based 32-channel HSL[32]; (e) Wuhan University’s airborne 56-channel HSL[28]; (f) Heriot-Watt University’s multi-spectral lidar based on acousto-optic tunable filter (AOTF)[33]; (g) Anhui University of Architecture’s 101-channel HSL[1]
Fig. 3. Multichannel waveforms of HSL and technical route of hyperspectral waveform decomposition. (a) Multichannel waveforms of HSL[41]; (b) technical route of hyperspectral waveform decomposition
Fig. 6. Impact and correction of distance effect[27]. (a) Distance effect; (b) distance effect correction
Fig. 7. Impact and correction of incident angle effect[31]. (a) Incident angle effect; (b) incident angle effect correction
|
|
Get Citation
Copy Citation Text
Yihua Hu, Yuhao Xia, Shilong Xu, Xinyuan Zhang, Wanying Ding, Shengjie Ma, Fei Wang, Xiao Dong, Jiajie Fang, Fei Han. Research Progress and Development Trends on Hyperspectral Lidar Remote Sensing Technology (Invited)[J]. Acta Optica Sinica, 2025, 45(18): 1801004
Category: Atmospheric Optics and Oceanic Optics
Received: Jan. 22, 2025
Accepted: Jul. 23, 2025
Published Online: Sep. 19, 2025
The Author Email: Yuhao Xia (skl_hyh@163.com), Shilong Xu (xushi1988@yeah.net)
CSTR:32393.14.AOS250537