Acta Optica Sinica, Volume. 36, Issue 7, 717001(2016)
Fast Reconstruction in Fluorescence Molecular Tomography Based on Locality Preserving Projections
[1] [1] Ntziachristos V. Fluorescence molecular imaging[J]. Annu Rev Biomed Eng, 2006, 8: 1-33.
[2] [2] Deliolanis N C, Dunham J, Wurdinger T, et al.. In-vivo imaging of murine tumors using complete-angle projection fluorescence molecular tomography[J]. Journal of Biomedical Optics, 2009, 14(3): 030509.
[3] [3] Dong Fang, Hou Yuqing, Yu Jingjing, et al.. Fluorescence molecular tomography via greedy method combined with region-shrinking strategy[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011701
[4] [4] Wang Z M, Panasyuk G Y, Markel V A, et al.. Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets[J]. Optics Letters, 2005, 30(24): 3338-3340.
[5] [5] Teresa C, Timothy R, Maximilian K, et al.. Wavelet-based data and solution compression for efficient image reconstruction in fluorescence diffuseoptical tomography[J]. Journal of Biomedical Optics, 2013, 18(8): 86008.
[6] [6] Markel V A, Mital V, Schotland J C. Inverse problem in optical diffusion tomography. III. Inversion formulas and singular-value decomposition[J]. J Opt Soc Am A, 2003, 20(5): 890-902.
[7] [7] Konecky S D, Panasyuk G Y, Lee K, et al.. Imaging complex structures with diffuse light[J]. Optics Express, 2008, 16(7): 5048-5060.
[8] [8] Ripoll J. Hybrid Fourier-real space method for diffuse optical tomography[J]. Optics Letters, 2010, 35(5): 688-690.
[9] [9] Zacharopoulos A D, Svenmarker P, Axelsson J, et al.. A matrix-free algorithm for multiple wavelength fluorescence tomography[J]. Optics Express, 2009, 17(5): 3042-3051.
[10] [10] Cao X, Wang X, Zhang B, et al.. Accelerated image reconstruction in fluorescence molecular tomography using dimension reduction[J]. Biomedical Optics Express, 2013, 4(1): 1-14.
[11] [11] Liu X, He X, Yan Z, et al.. 4D reconstruction of fluorescence molecular tomography using re-assembled measurement data[J]. Biomedical Optics Express, 2015, 6(6): 1963-1976.
[12] [12] He X. Locality preserving projections[J]. Advances in Neural Information Processing Systems, 2005, 45(1): 186-197.
[13] [13] Zhang J, Shi J, Zuo S, et al.. Fast reconstruction in fluorescence molecular tomography using data compression of intra-and inter-projections[J]. Chinese Optics Letters, 2015, 13(7): 071002.
[14] [14] Guo H, Yu J, He X, et al.. Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization[J]. Biomedical Optics Express, 2015, 6(5): 1648-1664.
[15] [15] He X, Liang J, Wang X, et al.. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.
[16] [16] Guo Hongbo, He Xiaowei, Hou Yuqing, et al.. Fluorescence molecular tomography based on nonconvex sparse regularization[J]. Acta Optica Sinica, 2015, 35(7): 0717001.
[17] [17] Jin Chen, Guo Hongbo, Hou Yuqing, et al.. Bioluminescence tomography reconscruction based on simplified spherical harmonics approximation model and sparse reconstruction by separable approximation[J]. Acta Optica Sinica, 2014, 34(6): 0617001.
Get Citation
Copy Citation Text
Zhang Xu, Yi Huangjian, Hou Yuqing, Zhang Haibo, He Xiaowei. Fast Reconstruction in Fluorescence Molecular Tomography Based on Locality Preserving Projections[J]. Acta Optica Sinica, 2016, 36(7): 717001
Category: Medical Optics and Biotechnology
Received: Jan. 18, 2016
Accepted: --
Published Online: Jul. 8, 2016
The Author Email: Xu Zhang (zhangxuaxc@stumail.nwu.edu.cn)