Journal of Synthetic Crystals, Volume. 52, Issue 12, 2186(2023)

Gallium Oxide Single Crystal: Morphology of Corrosion Pits under Acid and AlkalineBase Conditions

GAO Chong1,2、*, WEI Jinshan3,4, OUYANG Zheng1,2, HE Jinghui1,2, WANG Zenghui5, BU Yuzhe6, SAI Qinglin6,7, and ZHAO Peng1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • 6[in Chinese]
  • 7[in Chinese]
  • show less
    References(36)

    [3] [3] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of βGa2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 3641.

    [4] [4] WONG M H, SASAKI K, KURAMATA A, et al. Fieldplated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212215.

    [5] [5] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8MV/cm breakdown strength of MOVPEgrown Sndoped: Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2016, 37(7): 902905.

    [6] [6] YANG J C, AHN S, REN F, et al. High breakdown voltage (-201) βGa2O3 Schottky rectifiers[J]. IEEE Electron Device Letters, 2017, 38(7): 906909.

    [7] [7] ZHOU H, SI M W, ALGHAMDI S, et al. Highperformance depletion/enhancementmode βGa2O3 on insulator (GOOI) fieldeffect transistors with record drain currents of 600/450 mA/mm[J]. IEEE Electron Device Letters, 2017, 38(1): 103106.

    [8] [8] CHASE A O. Growth of βGa2O3 by the verneuil technique[J]. Journal of the American Ceramic Society, 1964, 47(9): 470.

    [9] [9] SUZUKI N, OHIRA S, TANAKA M, et al. Fabrication and characterization of transparent conductive Sndoped βGa2O3 single crystal[J]. Physica Status Solidi C, 2007, 4(7): 23102313.

    [10] [10] OHIRA S, SUZUKI N, ARAI N, et al. Characterization of transparent and conducting Sndoped βGa2O3 single crystal after annealing[J]. Thin Solid Films, 2008, 516(17): 57635767.

    [11] [11] UEDA N, HOSONO H, WASEDA R, et al. Synthesis and control of conductivity of ultraviolet transmitting βGa2O3 single crystals[J]. Applied Physics Letters, 1997, 70(26): 35613563.

    [12] [12] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of βGa2O3 single crystals by the edgedefined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 85068509.

    [13] [13] UECKER R. The historical development of the Czochralski method[J]. Journal of Crystal Growth, 2014, 401: 724.

    [14] [14] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of βGa2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720.

    [15] [15] HOSSAIN A, DOWDY A, BOLOTNIKOV A E, et al. Topographic evaluation of the effect of passivation in improving the performance of CdZnTe detectors[J]. Journal of Electronic Materials, 2014, 43(8): 29412946.

    [16] [16] WANG T, JIE W Q, XU Y D, et al. Characterization of CdZnTe crystal grown by bottomseeded Bridgman and Bridgman accelerated crucible rotation techniques[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: s622s625.

    [17] [17] YANG R, JIE W Q, LIU H. Growth of ZnTe single crystals from Te solution by vertical Bridgman method with ACRT[J]. Journal of Crystal Growth, 2014, 400: 2733.

    [18] [18] SHIMAMURA K, VILLORA E G, MURAMATU K, et al. Optoelectronic singlecrystal candidates for UV/VUV light sources(Crystal growth technology of fluoride and oxide developed from the viewpoint of their material and functional properties)[J]. Journal of the Japanese Association of Crystal Growth, 2006, 33:147154.

    [19] [19] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of βGa2O3Single crystals by the edgedefined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11): 85068509.

    [20] [20] KURAMATA A, KOSHI K, WATANABE S, et al. Highquality βGa2O3 single crystals grown by edgedefined filmfed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2.

    [21] [21] ALTUNTAS H, DONMEZ I, OZGITAKGUN C, et al. Effect of postdeposition annealing on the electrical properties of βGa2O3 thin films grown on pSi by plasmaenhanced atomic layer deposition[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2014, 32(4): 041504.

    [22] [22] ALTUNTAS H, DONMEZ I, OZGITAKGUN C, et al. Electrical characteristics of βGa2O3 thin films grown by PEALD[J]. Journal of Alloys and Compounds, 2014, 593: 190195.

    [23] [23] RAMACHANDRAN R K, DENDOOVEN J, BOTTERMAN J, et al. Correction: plasma enhanced atomic layer deposition of Ga2O3 thin films[J]. Journal of Materials Chemistry A, 2015, 3(2): 916.

    [24] [24] LI Y B, TOKIZONO T, LIAO M, et al. Efficient assembly of bridged βGa2O3 nanowires for solarblind photodetection[J]. Advanced Functional Materials, 2010, 20(22): 39723978.

    [25] [25] SASAKI K, KURAMATA A, MASUI T, et al. Devicequality βGa2O3 epitaxial films fabricated by ozone molecular beam epitaxy[J]. Applied Physics Express, 2012, 5(3): 035502.

    [26] [26] ORITA M, HIRAMATSU H, OHTA H, et al. Preparation of highly conductive, deep ultraviolet transparent βGa2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1): 134139.

    [27] [27] ORITA M, OHTA H, HIRANO M, et al. Deepultraviolet transparent conductive βGa2O3 thin films[J]. Applied Physics Letters, 2000, 77(25): 41664168.

    [28] [28] KONISHI K, GOTO K, TOGASHI R, et al. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of βGa2O3 layers by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2018, 492: 3944.

    [29] [29] GOTTSCHALCH V, MERGENTHALER K, WAGNER G, et al. Growth of βGa2O3 on Al2O3 and GaAs using metalorganic vaporphase epitaxy[J]. Physica Status Solidi (a), 2009, 206(2): 243249.

    [30] [30] HUANG C Y, HORNG R H, WUU D S, et al. Thermal annealing effect on material characterizations of βGa2O3 epilayer grown by metal organic chemical vapor deposition[J]. Applied Physics Letters, 2013, 102(1): 11119.111119.3.

    [31] [31] DE SANTI C, FABRIS E, CARIA A, et al. Trapping processes and band discontinuities in Ga2O3 FinFETs investigated by dynamic characterization and opticallyassisted measurements[C]//SPIE OPTO. Proc SPIE 11687, OxideBased Materials and Devices XII, Online Only. 2021, 11687: 1522.

    [32] [32] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metalsemiconductor fieldeffect transistors on singlecrystal βGa2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 0135040135043.

    [33] [33] WONG M H, SASAKI K, KURAMATA A, et al. Fieldplated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212215.

    [36] [36] OHBA E, KOBAYASHI T, TAISHI T, et al. Growth of (1 0 0), (0 1 0) and (0 0 1) βGa2O3 single crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 556: 125990.

    [37] [37] LI P K, BU Y Z, CHEN D Y, et al. Investigation of the crack extending downward along the seed of the βGa2O3 crystal grown by the EFG method[J]. CrystEngComm, 2021, 23(36): 63006306.

    [38] [38] MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of βGa2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453458.

    [39] [39] KASU M, HANADA K, MORIBAYASHI T, et al. Relationship between crystal defects and leakage current in βGa2O3 Schottky barrier diodes[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BB.

    [40] [40] OGAWA K, OGAWA N, KOSAKA R, et al. AFM observation of etchpit shapes on βGa2O3 (001) surface formed by molten alkali etching[J]. Materials Science Forum, 2020, 1004: 512518.

    Tools

    Get Citation

    Copy Citation Text

    GAO Chong, WEI Jinshan, OUYANG Zheng, HE Jinghui, WANG Zenghui, BU Yuzhe, SAI Qinglin, ZHAO Peng. Gallium Oxide Single Crystal: Morphology of Corrosion Pits under Acid and AlkalineBase Conditions[J]. Journal of Synthetic Crystals, 2023, 52(12): 2186

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 28, 2023

    Accepted: --

    Published Online: Jan. 3, 2024

    The Author Email: Chong GAO (gaochong2015@126.com)

    DOI:

    CSTR:32186.14.

    Topics