Chinese Journal of Lasers, Volume. 50, Issue 16, 1602301(2023)
Effect of Heat Treatment on Low‐Cycle Fatigue Properties of Selective Laser Melted IN718 at Room Temperature
[1] Song Z X, Gao W B, Wang D P et al. Very-high-cycle fatigue behavior of Inconel 718 alloy fabricated by selective laser melting at elevated temperature[J]. Materials, 14, 1001(2021).
[2] Xiao L R, Tan W, Liu L M et al. Low cycle fatigue behavior of GH3536 alloy formed via laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 2202009(2021).
[3] Zhai Z J, Zhao L, Peng Y et al. Low cycle fatigue behavior of laser welded DP980 steel joints[J]. Chinese Journal of Lasers, 48, 1802003(2021).
[4] Guo J T[M]. Materials science and engineering for superalloys, 3-17(2008).
[5] Zhang J, Zhang Q L, Yao J H et al. Process optimization and interfacial microstructure and properties analysis of laser cladded IN718 alloy[J]. Chinese Journal of Lasers, 49, 1602021(2022).
[6] Zhang D Y, Niu W, Cao X Y et al. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy[J]. Materials Science and Engineering: A, 644, 32-40(2015).
[7] Zhang D Y, Feng Z, Wang C J et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting[J]. Materials Science and Engineering: A, 724, 357-367(2018).
[8] Gao Y, Zhang D Y, Cao M et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process[J]. Materials Science and Engineering: A, 767, 138327(2019).
[9] Cao M, Zhang D Y, Gao Y et al. The effect of homogenization temperature on the microstructure and high temperature mechanical performance of SLM-fabricated IN718 alloy[J]. Materials Science and Engineering: A, 801, 140427(2021).
[10] Zhang D Y, Yi D H, Wu X P et al. SiC reinforced AlSi10Mg composites fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 894, 162365(2022).
[11] Huang S, Sun B B, Guo S Q. Microstructure and property evaluation of TA15 titanium alloy fabricated by selective laser melting after heat treatment[J]. Optics & Laser Technology, 144, 107422(2021).
[12] Dou Z, Wang Y Y, Zhang A F et al. Effect of different heat treatments on microstructure, properties, and anisotropy of SLM TC4[J]. Chinese Journal of Lasers, 49, 0802009(2022).
[13] Song C H, Fu H X, Yan Z W et al. Internal defects and control methods of laser powder bed fusion forming[J]. Chinese Journal of Lasers, 49, 1402801(2022).
[14] Gao S Y, Wang Y W, Su R et al. Low-cycle fatigue behavior of GH4169 superalloy[J]. Chinese Journal of Rare Metals, 46, 289-296(2022).
[15] Zeng X, Zhang X C, Tu S D et al. Effects of heat treatment on microstructure and low cycle fatigue life of GH4169 alloy[J]. Materials for Mechanical Engineering, 40, 21-24(2016).
[16] Zeng X. Effect of δ phase on low cycle fatigue behavior of Ni-based superalloy GH4169[D](2015).
[17] Konečná R, Nicoletto G, Kunz L et al. Microstructure and directional fatigue behavior of Inconel 718 produced by selective laser melting[J]. Procedia Structural Integrity, 2, 2381-2388(2016).
[18] Yu X B, Lin X, Liu F C et al. Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing[J]. Materials Science and Engineering: A, 798, 140092(2020).
[19] Liu S Y. Study on microstructure and fatigue properties of IN718 alloy based on selective laser melting[D](2021).
[20] Zhang Y Y, Duan Z, Shi H J. Comparison of the very high cycle fatigue behaviors of Inconel 718 with different loading frequencies[J]. Science China Physics, Mechanics and Astronomy, 56, 617-623(2013).
[21] Sun R, Li W, Zhang Y C et al. Interiorlong-life-fatigue cracking behavior and life prediction of a selective laser melted GH4169 superalloy at different temperatures and stress ratios[J]. Fatigue & Fracture of Engineering Materials & Structures, 45, 2112-2126(2022).
[23] Azadian S, Wei L Y, Warren R. Delta phase precipitation in Inconel 718[J]. Materials Characterization, 53, 7-16(2004).
[24] Cai D Y, Zhang W H, Nie P L et al. Dissolution kinetics of δ phase and its influence on the notch sensitivity of Inconel 718[J]. Materials Characterization, 58, 220-225(2007).
[25] Wegener T, Haase C, Liehr A et al. On the influence of ϰ-carbides on the low-cycle fatigue behavior of high-Mn light-weight steels[J]. International Journal of Fatigue, 150, 106327(2021).
[26] Qi S W, Rong P, Huang D et al. Room- and high-temperature mechanical properties of aluminum alloys fabricated using laser powder bed fusion additive manufacturing[J]. Chinese Journal of Lasers, 49, 0802001(2022).
[27] Qu H P, Wang L B, Wang D H et al. Low-cycle fatigue properties and life prediction of aging strengthened high-nickel Inconel-718 alloy[J]. Heat Treatment of Metals, 46, 1-6(2021).
[28] Liu H D, Wang D Z, Zhou L P et al. Excellent double-aging strengthening effect with the high density γ’ phase of 945A nickel-based alloy[J]. Crystals, 12, 175(2022).
[29] An J L, Wang L, Liu Y et al. Influences of long-term aging on microstructure evolution and low cycle fatigue behavior of GH4169 alloy[J]. Acta Metallurgica Sinica, 51, 835-843(2015).
[30] Gribbin S, Ghorbanpour S, Ferreri N C et al. Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures[J]. Materials Characterization, 149, 184-197(2019).
[31] Wei X P, Zheng W J, Song Z G et al. Effects of heat treatment on microstructure and mechanical properties of Inconel 718 alloy[J]. Transactions of Materials and Heat Treatment, 33, 53-58(2012).
Get Citation
Copy Citation Text
Xingtao Feng, Jianmin Li, Shuo Geng, Yujing Chi, Denghao Yi, Dongyun Zhang. Effect of Heat Treatment on Low‐Cycle Fatigue Properties of Selective Laser Melted IN718 at Room Temperature[J]. Chinese Journal of Lasers, 2023, 50(16): 1602301
Category: Laser Additive Manufacturing
Received: Dec. 14, 2022
Accepted: Feb. 7, 2023
Published Online: Jul. 31, 2023
The Author Email: Zhang Dongyun (zhangdy@bjut.edu.cn)