Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2237005(2024)

Underwater Image Enhancement Model Based on Deep Multi-Prior Learning

Yang Ou, Jianfeng Huang, and Rong Yuan*
Author Affiliations
  • School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan , China
  • show less
    Figures & Tables(8)
    Proposed DMPL model framework
    Visual quality of UIEB_10223 image. (a) Original image; (b) z1cm,n; (c) z2cm,n; (d) z3cm,n; (e) z4cm,n
    Enhancement results of the test_p114 image in the EUVP dataset. (a) Original image; (b) RoWS[3]; (c) MIP[2]; (d) ULAP[11]; (e) FUnIE-GAN[7]; (f) UIESS[8]; (g) UWNet[21]; (h) PUIENet-MC[10]; (i) PUIENet-MP[10]; (j) TOPAL[9]; (k) proposed model; (l) reference truth map
    Enhancement results of the test_p317 image in the EUVP dataset. (a) Original image; (b) RoWS[3]; (c) MIP[2]; (d) ULAP[11]; (e) FUnIE-GAN[7]; (f) UIESS[8]; (g) UWNet[21]; (h) PUIENet-MC[10]; (i) PUIENet-MP[10]; (j) TOPAL[9]; (k) proposed model; (l) reference truth map
    • Table 1. Impact of different models on network performance

      View table

      Table 1. Impact of different models on network performance

      ModelEUVP
      PSNR /dBSSIMUIQM
      V126.020.782.83
      V226.210.792.85
      V326.980.792.93
      DMPL27.210.813.01
    • Table 2. Performance comparison on EUVP dataset

      View table

      Table 2. Performance comparison on EUVP dataset

      ModelPSNRSSIMUIQMBRISQUE
      RoWS224.860.722.1436.81
      MIP319.510.631.9335.31
      ULAP1221.890.722.2035.39
      FUnIE-GAN826.220.792.9730.69
      UIESS924.300.793.0137.56
      UWNet2027.100.792.9640.34
      PUIENet-MC1121.350.783.1736.75
      PUIENet-MP1121.450.773.1936.92
      TOPAL1022.140.802.9835.10
      DMPL27.210.813.0132.03
    • Table 3. Performance comparison on UIEB dataset

      View table

      Table 3. Performance comparison on UIEB dataset

      ModelNIQEPIQEUCIQECCF
      RoWS25.0944.580.5235.52
      MIP35.5446.180.5438.54
      ULAP125.2145.160.5642.10
      FUnIE-GAN85.0915.990.5418.99
      UIESS95.7142.630.5719.26
      UWNet205.8050.670.5016.85
      PUIENet-MC114.7342.150.5621.60
      PUIENet-MP114.7643.280.5419.64
      TOPAL104.9936.970.5523.11
      DMPL4.7015.470.5618.25
    • Table 4. Complexity of different underwater image enhancement algorithms

      View table

      Table 4. Complexity of different underwater image enhancement algorithms

      ModelInference time /s
      FUnIE-GAN80.024
      UIESS90.046
      PUIENet-MC110.170
      PUIENet-MP110.030
      DMPL0.201
    Tools

    Get Citation

    Copy Citation Text

    Yang Ou, Jianfeng Huang, Rong Yuan. Underwater Image Enhancement Model Based on Deep Multi-Prior Learning[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2237005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Mar. 7, 2024

    Accepted: Mar. 25, 2024

    Published Online: Nov. 19, 2024

    The Author Email: Rong Yuan (yuanrong27@126.com)

    DOI:10.3788/LOP240845

    CSTR:32186.14.LOP240845

    Topics