Chinese Journal of Lasers, Volume. 50, Issue 2, 0210002(2023)

Automatic Registration Method of Vehicle‐Borne Laser Point Cloud Combining Ground Points and Rods

Mengbing Xu1,2、*, Xianlin Liu3, Xueting Zhong1, Panke Zhang1,2, and Siyun Chen1,2
Author Affiliations
  • 1College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
  • 2Beijing GEO-Vision Tech. Co., Ltd., Beijing 100070, China
  • 3Chinese Academy of Surveying & Mapping, Beijing 100830, China
  • show less
    Figures & Tables(14)
    Overall technical flowchart
    Schematic diagram of gradient calculation
    Overlapping area of round-trip ground point clouds of the same road
    Flowchart of proposed algorithm
    Schematic diagram of 2D grid projection of tree and street light
    Ground point cloud filtering effect. (a) Original road point cloud; (b) gradient filtering result;
    Ground point cloud range of long road section. (a) Overlapping area of round-trip point clouds;(b)local detail magnification
    Elevation registration effect. (a) Point clouds of original road section; (b) target point sets and point sets to be registered;
    Plane registration effect. (a) Point clouds of original road section; (b) target point sets and point sets to be registered;
    Comparison of registration results using different methods. (a) Point-to-point ICP method; (b) CPD method; (c) RANSAC-ICP method; (d) GICP method; (e) improved ICP method proposed in this paper
    Accuracy verification of experimental results. (a) Distribution of improved ICP and manual registration parameters;
    • Table 1. Performance parameters of Riegl laser scanner and IMU

      View table

      Table 1. Performance parameters of Riegl laser scanner and IMU

      DeviceParameterValue
      Laser scanner Riegl-VUX-1HALaser pulse repetition rate /kHzup to 1000
      Laser beam divergence /mrad0.5

      Scanning mechanism

      Accuracy /mm

      Field of view(selectable)

      Rotating mirror

      5

      360°,full circle

      Scan speed(selectable)/(r·s-110~250
      IMUGyro driftRoll:0.01°/h;pitch:0.01°/h;yaw:0.01°/h/cos l l representing latitude)
      Maintain accuracyRoll:1‰;pitch:1‰;yaw:3‰~5‰
    • Table 2. Main parameter settings in algorithm

      View table

      Table 2. Main parameter settings in algorithm

      Parameter categoryParameter settings
      Data preprocessingMileage split value 25 m,overlapping area ≥140 m2
      Elevation registration

      voxel grid size 0.05 m,upper dynamic range 0.6 m

      GNSS duration interruption time 4 min,rotation angle threshold 0.04°,lower dynamic range 0.1 m,iterative decrement unit 0.02 m

      Plane registrationFixed range threshold 0.5 m,surface curvature threshold ≤0.03,cumulative times threshold 40
      Thread and ending conditionsNumber of parallel threads 12(dynamic),error threshold ≤2×10-2 m,
      front-to-back difference threshold 10-7 m,maximum iteration 270
    • Table 3. Registration accuracy and efficiency analysis of different algorithms

      View table

      Table 3. Registration accuracy and efficiency analysis of different algorithms

      AlgorithmRegistration accuracy /mRegistration time /s
      Point-to-point ICP13.073217.253
      CPD2.934>300.000
      RANSAC-ICP0.036236.940
      GICP0.15728.652
      Improved ICP0.0149.776
    Tools

    Get Citation

    Copy Citation Text

    Mengbing Xu, Xianlin Liu, Xueting Zhong, Panke Zhang, Siyun Chen. Automatic Registration Method of Vehicle‐Borne Laser Point Cloud Combining Ground Points and Rods[J]. Chinese Journal of Lasers, 2023, 50(2): 0210002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Mar. 21, 2022

    Accepted: May. 7, 2022

    Published Online: Feb. 2, 2023

    The Author Email: Xu Mengbing (2210901009@cnu.edu.cn)

    DOI:10.3788/CJL220689

    Topics