Chinese Optics, Volume. 15, Issue 2, 233(2022)
Photothermal properties of gold nanostars therapeutic agent and its application in photothermal therapy and optical coherence tomography
[1] KELKAR S S, REINEKE T M. Theranostics: combining imaging and therapy[J]. Bioconjugate Chemistry, 22, 1879-1903(2011).
[2] ZHOU Y, LIU S N, CAI L H, . Ion-doped poly(2-nitro-1, 4-phenylenediamine) nanospheres for synergistic photo- and chemo-dynamic therapy[J]. Chinese Journal of Applied Chemistry, 38, 181-187(2021).
[3] KUMAR A, KIM S, NAM J M. Plasmonically engineered nanoprobes for biomedical applications[J]. Journal of the American Chemical Society, 138, 14509-14525(2016).
[4] ZOU Q L, ABBAS M, ZHAO L Y, et al. Biological photothermal nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy[J]. Journal of the American Chemical Society, 139, 1921-1927(2017).
[5] JIANG Y T, SUN M X, OUYANG N, et al. Synergistic chemo-thermal therapy of cancer by DNA-templated silver nanoclusters and polydopamine nanoparticles[J]. ACS Applied Materials & Interfaces, 13, 21653-21660(2021).
[6] RAEESI V, CHOU L Y T, CHAN W C W. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures[J]. Advanced Materials, 28, 8511-8518(2016).
[7] ZHANG Y J, WANG X H, XU Y J, . Preparation of graphene Nano-drug carrier system and its killing effect on tumor cells[J]. Chinese Journal of Applied Chemistry, 38, 693-703(2021).
[8] TIAN Q W, TANG M H, SUN Y G, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 23, 3542-3547(2011).
[9] CHOU S S, KAEHR B, KIM J, et al. Chemically exfoliated MoS2 as near-infrared photothermal agents[J]. Angewandte Chemie International Edition, 52, 4160-4164(2013).
[10] ZHANG M, CHEN D ZH, REN Y W, . Sensing interface based on nanoislandlike sliver film@gold nanotip for surface enhanced Raman scattering analysis of dopamine[J]. Chinese Journal of Applied Chemistry, 38, 866-873(2021).
[11] DE ABERASTURI D J, SERRANO-MONTES A B, LIZ-MARZÁN L M. Modern applications of plasmonic nanoparticles: from energy to health[J]. Advanced Optical Materials, 3, 602-617(2015).
[12] PANG B, ZHAO Y F, LUEHMANN H, et al. 64Cu-doped PdCu@Au tripods: a multifunctional nanomaterial for positron emission tomography and image-guided photothermal cancer treatment[J]. ACS Nano, 10, 3121-3131(2016).
[13] RAYALU S S, JOSE D, MANGRULKAR P A, et al. Photodeposition of AuNPs on metal oxides: study of SPR effect and photocatalytic activity[J]. International Journal of Hydrogen Energy, 39, 3617-3624(2014).
[14] MA K, LI Y W, WANG ZH G, et al. Core-shell gold nanorod@layered double hydroxide nanomaterial with highly efficient photothermal conversion and its application in antibacterial and tumor therapy[J]. ACS Applied Materials & Interfaces, 11, 29630-29640(2019).
[15] DIAGARADJANE P, SHETTY A, WANG J C, et al. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy[J]. Nano Letter, 8, 1492-1500(2008).
[16] CHOI W I, KIM J Y, KANG C, et al. Tumor regression
[17] LU W, XIONG CH Y, ZHANG G D, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres[J]. Clinical Cancer Research, 15, 876-886(2009).
[18] KIM S H, KIM J H, KANG S W. Nondestructive defect inspection for LCDs using optical coherence tomography[J]. Displays, 32, 325-329(2011).
[19] LU D X, FANG W H, LI Y Y, . Optical coherence tomography: principles and recent developments[J]. Chinese Optics, 13, 919-935(2020).
[20] EHLERS J P, GUPTA P K, FARSIU S, et al. Evaluation of contrast agents for enhanced visualization in optical coherence tomography[J]. Investigative Ophthalmology & Visual Science, 51, 6614-6619(2010).
[21] CHEN ZH P, MILNER T E, SRINIVAS S, et al. Noninvasive imaging of
[22] AU K M, LU Z H, MATCHER S J, et al. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging[J]. Advanced Materials, 23, 5792-5795(2011).
[23] MONDAL I, RAJ S, ROY P, et al. Silver nanoparticles (AgNPs) as a contrast agent for imaging of animal tissue using swept-source optical coherence tomography (SSOCT)[J]. Laser Physics, 28, 015601(2018).
[24] XING Y Y, SHI Y ZH, DENG SH X, . Preparation and application of catechin-silver nanocomposites[J]. Chinese Journal of Applied Chemistry, 37, 1062-1068(2020).
[25] ZHU H SH, LIU CH H, LIU X X, et al. A multi-colorimetric immunosensor for visual detection of ochratoxin A by mimetic enzyme etching of gold nanobipyramids[J]. Microchimica Acta, 188, 62(2021).
[26] JENA B K, RAJ C R. Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity[J]. The Journal of Physical Chemistry C, 111, 15146-15153(2007).
[27] YAU O, HÉTU M F, HERR J E, et al. Development of a carotid vulnerable plaque phantom model evaluated by pixel distribution analysis[J]. Ultrasound in Medicine and Biology, 44, 2768-2779(2018).
[28] CAO X W, CHEN SH, BAO M, . Synthesis and surface modifications of Au nanostars and their applications in biomedical fields[J]. Progress in Chemistry, 30, 1380-1391(2018).
Get Citation
Copy Citation Text
Zhe WU, Dong-xiao LU, Jin-hua LI. Photothermal properties of gold nanostars therapeutic agent and its application in photothermal therapy and optical coherence tomography[J]. Chinese Optics, 2022, 15(2): 233
Category: Original Article
Received: Nov. 25, 2021
Accepted: Feb. 12, 2022
Published Online: Mar. 28, 2022
The Author Email: