Semiconductor Optoelectronics, Volume. 46, Issue 1, 1(2025)
Review of the Key Parameters and Quenching Circuit Design of Single-Photon Avalanche Diodes
[2] [2] Buttafava M, Zeman J, Tosi A, et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode[J]. Optics Express, 2015, 23(16): 20997-21011.
[3] [3] Riccardo S, Conca E, Sesta V, et al. Fast-gated 16×16 SPAD array with 16 on-chip 6 ps time-to-digital converters for non-line-of-sight imaging[J]. IEEE Sensors Journal, 2022, 22(17): 16874-16885.
[4] [4] Pavia J M, Scandini M, Lindner S, et al. A 1×400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography[J]. IEEE Journal of Solid-State Circuits, 2015, 50(10): 2406-2418.
[5] [5] Goetzberger A, McDonald B, Haitz R H, et al. Avalanche effects in silicon p-n junctions. II. structurally perfect junctions[J]. Journal of Applied Physics, 1963, 34(6): 1591-1600.
[6] [6] Haitz R H, Goetzberger A. Avalanche noise study in microplasmas and uniform junctions[J]. Solid-State Electronics, 1963, 6(6): 678-680.
[7] [7] Oldham W G, Samuelson R R, Antognetti P. Triggering phenomena in avalanche diodes[J]. IEEE Transactions on Electron Devices, 1972, 19(9): 1056-1060.
[8] [8] Cova S, Longoni A, Ripamonti G. Active-quenching and gating circuits for single-photon avalanche diodes (SPADs)[J]. IEEE Transactions on Nuclear Science, 1982, 29(1): 599-601.
[9] [9] Aull B F, Loomis A H, Gregory J A, et al. Geiger-mode avalanche photodiode arrays integrated with CMOS timing circuits[C]//56th Annual Device Research Conference Digest. IEEE, 1998: 58-59.
[10] [10] Rochas A, Gani M, Furrer B, et al. Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology[J]. Review of Scientific Instruments, 2003, 74(7): 3263-3270.
[11] [11] Fujisaki Y, Tsugawa H, Sakai K, et al. A back-illuminated 6 m SPAD depth sensor with PDE 36.5% at 940 nm via combination of dual diffraction structure and 2×2 on-chip lens[C]//2023 IEEE Symposium on VLSI Technology and Circuits (VLSI TC). IEEE, 2023: 1-2.
[14] [14] Zheng J, Xue X, Ji C, et al. Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch[J]. Nature Communications, 2022, 13: 1517.
[15] [15] Cusini I, Berretta D, Conca E, et al. Historical perspectives, state of art and research trends of single photon avalanche diodes and their applications (Part 1: single pixels)[J]. Frontiers Physics, 2022, 10: 906675.
[16] [16] Zappa F, Tosi A, Dalla Mora A, et al. SPICE modeling of single photon avalanche diodes[J]. Sensors and Actuators A: Physical, 2009, 153(2): 197-204.
[17] [17] Tisa S, Zappa F, Tosi A, et al. Electronics for single photon avalanche diode arrays[J]. Sensors and Actuators. A: Physical, 2007, 140(1): 113-122.
[18] [18] Bronzi D, Villa F, Tisa S, et al. SPAD figures of merit for photon-counting, photon-timing and imaging applications: A review[J]. IEEE Sensors Journal, 2016, 16(1): 3-12.
[19] [19] Wei Z, Liu D, Yu Y. A dark count rate self-adjusting charge pump with negative feedback control for SPAD array biasing[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(8): 3710-3714.
[20] [20] Richardson J A, Webster E A G, Grant L A, et al. Scaleable single-photon avalanche diode structures in nanometer CMOS technology[J]. IEEE Transactions on Electron Devices, 2011, 58(7): 2028-2035.
[21] [21] Scott R, Jiang W, Qian X, et al. A multi-time-gated SPAD array with integrated coarse TDCs[J]. Electronics, 2022, 11(13): 2015.
[22] [22] Wei Z, Liu D, Yu Y. A dark count rate self-adjusting charge pump with negative feedback control for SPAD array biasing[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(8): 3710-3714.
[23] [23] Park H J, Jee D W. A 48×2 CMOS SPAD sensor with regulated dark count[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(9): 4046-4050.
[24] [24] Liu F, Bruschini C, Toh E H, et al. Doping engineering for PDP optimization in SPADs implemented in 55-nm BCD process[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2024, 30(1): 1-7.
[25] [25] Mandai S, Fishburn M W, Maruyama Y, et al. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology[J]. Optics Express, 2012, 20(6): 5849-5857.
[26] [26] Fujisaki Y, Tsugawa H, Sakai K, et al. A back-illuminated 6 m SPAD depth sensor with PDE 36.5% at 940 nm via combination of dual diffraction structure and 2×2 on-chip lens[C]//2023 IEEE Symposium on VLSI Technology and Circuits (VLSI TC). IEEE, 2023: 1-2.
[27] [27] Gramuglia F, Keshavarzian P, Kizilkan E, et al. Engineering breakdown probability profile for PDP and DCR optimization in a SPAD fabricated in a standard 55 nm BCD process[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 1-10.
[28] [28] Bian D, Liu D, Dong J, et al. A P-type enrichment/high voltage N-well junction Si-SPAD with enhanced near-infrared sensitivity in 180 nm BCD technology[J]. IEEE Electron Device Letters, 2024, 45(3): 436-439.
[29] [29] Tisa S, Guerrieri F, Zappa F. Variable-load quenching circuit for single-photon avalanche diodes[J]. Optics Express, 2008, 16(3): 2232-2244.
[30] [30] Tisa S, Guerrieri F, Zappa F. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates[J]. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 610(1): 24-27.
[31] [31] Kindt W J, van Zeijl H W, Middelhoek S. Optical cross talk in Geiger mode avalanche photodiode arrays: Modeling, prevention and measurement[C]//28th European Solid-State Device Research Conference. IEEE, 2005: 192-195.
[32] [32] Palubiak D P, Deen M J. CMOS SPADs: Design issues and research challenges for detectors, circuits and arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 6000718.
[33] [33] Yu Y, Wang C, Shi H, et al. A review of quenching circuit design based on Geiger-mode APD[C]//2018 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2018: 28-33.
[34] [34] Pancheri L, Stoppa D. Low-noise CMOS single-photon avalanche diodes with 32 ns dead time[C]//ESSDERC 2007 ―37th European Solid State Device Research Conference. IEEE, 2007: 362-365.
[35] [35] Uhring W, Le Normand J P, Zint V, et al. A 64 single photon avalanche diode array in 0.18 μm CMOS standard technology with versatile quenching circuit for quick prototyping[J]. Proc. SPIE, 2012: 84391E.
[37] [37] Severini F, Cusini I, Madonini F, et al. Spatially resolved event-driven 24×24 pixels SPAD imager with 100% duty cycle for low optical power quantum entanglement detection[J]. IEEE Journal of Solid-State Circuits, 2023, 58(8): 2278-2287.
Get Citation
Copy Citation Text
LIU Tong, CHEN Yuting, CHENG Jianghua, CAI Yahui, CHENG Bang. Review of the Key Parameters and Quenching Circuit Design of Single-Photon Avalanche Diodes[J]. Semiconductor Optoelectronics, 2025, 46(1): 1
Category:
Received: Dec. 12, 2024
Accepted: Sep. 18, 2025
Published Online: Sep. 18, 2025
The Author Email: