Journal of Inorganic Materials, Volume. 38, Issue 10, 1133(2023)

Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review

Lukai WANG, Junzong FENG, Yonggang JIANG, Liangjun LI, and Jian FENG*
Author Affiliations
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    References(119)

    [4] GUO Z, ZHOU C. Recent advances in ink-based additive manufacturing for porous structures[J]. Additive Manufacturing, 48: 102405(2021).

    [5] MENDES M A, GOETZE P, TALUKDAR P et al. Measurement and simplified numerical prediction of effective thermal conductivity of open-cell ceramic foams at high temperature[J]. International Journal of Heat and Mass Transfer, 102: 396(2016).

    [9] MIDDELKOOP V, SLATER T, FLOREA M et al. Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed- oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production[J]. Journal of Cleaner Production, 214: 606(2019).

    [17] LI F, LIANG M, MA X F et al. Preparation and characterization of stoichiometric zirconium carbide foams by direct foaming of zirconia sols[J]. Journal of Porous Materials, 22: 493(2015).

    [18] HEDAYAT N, DU Y, ILKHANI H. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods[J]. Renewable and Sustainable Energy Reviews, 77: 1221(2017).

    [22] GURAV J L, JUNG I K, PARK H H et al. Silica aerogel: synthesis and applications[J]. Journal of Nanomaterials, 409310(2010).

    [33] MANÇANARES C G, DE S, ZANCUL E, CAVALCANTE DA SILVA J et al. Additive manufacturing process selection based on parts’ selection criteria[J]. The International Journal of Advanced Manufacturing Technology, 1007(2015).

    [36] ZHANG B, PEI X, SONG P et al. Porous bioceramics produced by inkjet 3D printing: effect of printing ink formulation on the ceramic macro and micro porous architectures control[J]. Composites Part B: Engineering, 112(2018).

    [37] HOLMAN R K, UHLAND S A, CIMA M J et al. Surface adsorption effects in the inkjet printing of an aqueous polymer solution on a porous oxide ceramic substrate[J]. Journal of Colloid and Interface Science, 266(2002).

    [38] RABINSKIY L, RIPETSKY A, SITNIKOV S et al[conf-proc].

    [48] LIU Q, ZHAI W. Hierarchical porous ceramics with distinctive microstructures by emulsion-based direct ink writing[J]. ACS Applied Materials & Interfaces, 32196(2022).

    [49] ROOPAVATH U K, MALFERRARI S, VAN HAVER A et al. Optimization of extrusion based ceramic 3D printing process for complex bony designs[J]. Materials & Design, 162: 263(2019).

    [50] WANG L, FENG J, LUO Y et al. Three-dimensional-printed silica aerogels for thermal insulation by directly writing temperature- induced solidifiable inks[J]. ACS Applied Materials & Interfaces, 40964(2021).

    [52] TROKSA A L, ESHELMAN H V, CHANDRASEKARAN S et al. 3D-printed nanoporous ceramics: tunable feedstock for direct ink write and projection microstereolithography[J]. Materials & Design, 198: 109337(2021).

    [53] HUANG K, ELSAYED H, FRANCHIN G et al. 3D printing of polymer-derived SiOC with hierarchical and tunable porosity[J]. Additive Manufacturing, 36: 101549(2020).

    [58] SCHAFFNER M, FABER J A, PIANEGONDA L et al. 3D printing of robotic soft actuators with programmable bioinspired architectures[J]. Nature Communications, 878(2018).

    [59] M’BARKI A, BOCQUET L, STEVENSON A. Linking rheology and printability for dense and strong ceramics by direct ink writing[J]. Scientific Reports, 6017(2017).

    [63] OLIVEIRA R L, ALVES A P, BARBOSA L et al. 3D printing of bioactive glass S53P4/sodium alginate sintering-free scaffolds[J]. Bioprinting, 27: e00226(2022).

    [65] SUN H, HU C, ZHOU C et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair[J]. Materials & Design, 189: 108540(2020).

    [79] JONHSON W, XU X, ZHANG D et al. Fabrication of 3D-printed ceramic structures for portable solar desalination devices[J]. ACS Applied Materials & Interfaces, 23220(2021).

    [80] WANG L, FENG J, JIANG Y et al. Ultraviolet-assisted direct- write printing strategy towards polyorganosiloxane-based aerogels with freeform geometry and outstanding thermal insulation performance[J]. Chemical Engineering Journal, 455: 140818(2022).

    [81] XU X, YANG J, JONHSON W et al. Additive manufacturing solidification methodologies for ink formulation[J]. Additive Manufacturing, 56: 102939(2022).

    [84] GARCÍA-GONZÁLEZ C A, CAMINO-REY M, ALNAIEF M et al. Supercritical drying of aerogels using CO2: effect of extraction time on the end material textural properties[J]. The Journal of Supercritical Fluids, 66: 297(2012).

    [87] SIMóN-HERRERO C, CAMINERO-HUERTAS S, ROMERO A et al. Effects of freeze-drying conditions on aerogel properties[J]. Journal of Materials Science, 51: 8977(2016).

    [88] OIKONOMOPOULOU V P, KROKIDA M K, KARATHANOS V T. The influence of freeze drying conditions on microstructural changes of food products[J]. Procedia Food Science, 1: 647(2011).

    [102] WANG H, SUNG I, LI X et al. Fabrication of porous SiC ceramics with special morphologies by sacrificing template method[J]. Journal of Porous Materials, 11: 265(2004).

    [104] YANG G, GUAN R, ZHEN H et al. Tunable size of hierarchically porous alumina ceramics based on DIW 3D printing supramolecular gel.[J]. ACS Applied Materials & Interfaces, 10998(2022).

    [106] FARRELL E S, GANONYAN N, COOPERSTEIN I et al. 3D- printing of ceramic aerogels by spatial photopolymerization[J]. Applied Materials Today, 24: 101083(2021).

    [110] HALEEM A, JAVAID M, KHAN R H et al. 3D printing applications in bone tissue engineering[J]. Journal of Clinical Orthopaedics and Trauma, 11: S118(2020).

    [111] KANWAR S, VIJAYAVENKATARAMAN S. Design of 3D printed scaffolds for bone tissue engineering: a review[J]. Bioprinting, 24: e00167(2021).

    [115] LIU D, JIANG P, LI X et al. 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation[J]. Chemical Engineering Journal, 397: 125392(2020).

    [116] HOSLETT J, MASSARA T M, MALAMIS S et al. Surface water filtration using granular media and membranes: a review[J]. Science of the Total Environment, 639: 1268(2018).

    [117] LI N, LU X, HE M et al. Catalytic membrane-based oxidation- filtration systems for organic wastewater purification: a review[J]. Journal of Hazardous Materials, 414: 125478(2021).

    [118] NADAGOUDA M N, GINN M, RASTOGI V. A review of 3D printing techniques for environmental applications[J]. Current Opinion in Chemical Engineering, 28: 173(2020).

    [120] JIN Z, MEI H, LIU H et al. High-strength, superhydrophilic/ underwater superoleophobic multifunctional ceramics for high efficiency oil-water separation and water purification[J]. Materials Today Nano, 18: 100199(2022).

    [121] LIU K, ZHANG Q, ZHOU C et al. 4D printing of lead zirconate titanate piezoelectric composites transducer based on direct ink writing[J]. Frontiers in Materials, 8: 659441(2021).

    Tools

    Get Citation

    Copy Citation Text

    Lukai WANG, Junzong FENG, Yonggang JIANG, Liangjun LI, Jian FENG. Direct-ink-writing 3D Printing of Ceramic-based Porous Structures: a Review[J]. Journal of Inorganic Materials, 2023, 38(10): 1133

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 13, 2023

    Accepted: --

    Published Online: Mar. 6, 2024

    The Author Email: Jian FENG (fengj@nudt.edu.cn)

    DOI:10.15541/jim20230070

    Topics