Acta Optica Sinica, Volume. 40, Issue 1, 0111006(2020)
Applications of Compressive Sensing in Optical Imaging
[1] Neifeld M A, Shankar P. Feature-specific imaging[J]. Applied Optics, 42, 3379-3389(2003).
[2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).
[3] Baraniuk R G. Compressive sensing [lecture notes][J]. IEEE Signal Processing Magazine, 24, 118-121(2007).
[4] Kutyniok G. Compressed sensing: theory and applications[J]. Corr, 52, 1289-1306(2012).
[5] Antonini M, Barlaud M, Mathieu P et al. Image coding using wavelet transform[J]. IEEE Transactions on Image Processing, 1, 205-220(1992).
[6] Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 36, 961-1005(1990).
[7] Starck J L, Candès E J, Donoho D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing, 11, 670-684(2002).
[8] Candès E, Demanet L, Donoho D et al. Fast discrete curvelet transforms[J]. Multiscale Modeling & Simulation, 5, 861-899(2006).
[9] Stern A[M]. Optical compressive imaging(2016).
[10] Marques E C, Maciel N, Naviner L et al. A review of sparse recovery algorithms[J]. IEEE Access, 7, 1300-1322(2018).
[12] Vaswani N, Zhan J C. Recursive recovery of sparse signal sequences from compressive measurements: a review[J]. IEEE Transactions on Signal Processing, 64, 3523-3549(2016).
[13] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).
[14] Gehm M E, Brady D J. Compressive sensing in the EO/IR[J]. Applied Optics, 54, C14-C22(2015).
[15] Gerrits T, Lum D J, Verma V et al. Short-wave infrared compressive imaging of single photons[J]. Optics Express, 26, 15519-15527(2018).
[16] Ke J, Ashok A, Neifeld M A. Block-wise motion detection using compressive imaging system[J]. Optics Communications, 284, 1170-1180(2011).
[17] Goodfellow I, Bengio Y, Courville A[M]. Deep learning(2016).
[18] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).
[19] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 346, 589-592(2008).
[20] Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 55, 5695-5702(2007).
[21] Duarte-Carvajalino J M, Sapiro G. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization[J]. IEEE Transactions on Image Processing, 18, 1395-1408(2009).
[22] Xu J P, Pi Y M, Cao Z J. Optimized projection matrix for compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2010, 560349(2010).
[23] Lu C, Li H, Lin Z. Optimized projections for compressed sensing via direct mutual coherence minimization[J]. Signal Processing, 151, 45-55(2018).
[24] Wang Q, Zhang P L, Wang H G et al. Survey on construction of measurement matrices in compressive sensing[J]. Journal of Computer Applications, 37, 188-196(2017).
[25] Wang Q, Li J, Shen Y. A survey on deterministic measurement matrix construction algorithms in compressive sensing[J]. Acta Electronica Sinica, 41, 2041-2050(2013).
[26] Obermeier R. Martinez-Lorenzo J A. Sensing matrix design via capacity maximization for block compressive sensing applications[J]. IEEE Transactions on Computational Imaging, 5, 27-36(2019).
[28] Obermeier R. Martinez-Lorenzo J A. Sensing matrix design via mutual coherence minimization for electromagnetic compressive imaging applications[J]. IEEE Transactions on Computational Imaging, 3, 217-229(2017).
[29] Adcock B, Hansen A C, Poon C et al. Breaking the coherence barrier: a new theory for compressed sensing[J]. Forum of Mathematics, Sigma, 5, e4(2017).
[30] Jolliffe I. Principal component analysis[M]. //Lovric M. International encyclopedia of statistical science. Berlin, Heidelberg: Springer(2011).
[31] Ke J, Lam E Y. Fast compressive measurements acquisition using optimized binary sensing matrices for low-light-level imaging[J]. Optics Express, 24, 9869-9887(2016).
[33] Chen H, Asif M S, Sankaranarayanan A C et al. FPA-CS: focal plane array-based compressive imaging in short-wave infrared. [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2358-2366(2015).
[34] Mun S, Fowler J E. Block compressed sensing of images using directional transforms. [C]//2009 16th IEEE international conference on image processing (ICIP), November 7-10, 2009, Cairo, Egypt. New York: IEEE, 3021-3024(2009).
[35] Gan L. Block compressed sensing of natural images. [C]//2007 15th International Conference on Digital Signal Processing, July 1-4, 2007, Cardiff, UK. New York: IEEE, 403-406(2007).
[36] Neifeld M A, Ke J. Optical architectures for compressive imaging[J]. Applied Optics, 46, 5293-5303(2007).
[37] Roth S, Black M J. Fields of experts: a framework for learning image priors. [C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE, 8624117(2005).
[39] Dabov K, Foi A, Katkovnik V et al. BM3D image denoising with shape-adaptive principal component analysis. [C]//SPARS'09-Signal Processing with Adaptive Sparse Structured Representations, Inria Rennes-Bretagne Atlantique, April 2009, Saint Malo, France. [S.l.: s.n.](2009).
[40] Burger H C, Schuler C J, Harmeling S. Image denoising: can plain neural networks compete with BM3D?. [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, June 16-21, 2012, Providence, RI, USA. New York: IEEE, 2392-2399(2012).
[41] Dumas J P, Lodhi M A, Bajwa W U et al. Computational imaging with a highly parallel image-plane-coded architecture: challenges and solutions[J]. Optics Express, 24, 6145-6155(2016).
[42] Kaylor B M, Ashok A, Seger E M et al. Dynamically programmable, dual-band computational imaging system. [C]//Imaging and Applied Optics Technical Papers, June 24-28, 2012, Monterey, California, United States. Washington, D.C.: OSA, CM4B, 3(2012).
[44] Todd D, Sanjeev A, Judith D et al. An overview of joint activities on computational imaging and compressive sensing systems by NATO SET-232[J]. Proceedings of SPIE, 10669, 106690H(2018).
[45] Kang L W, Lu C S. Distributed compressive video sensing. [C]//2009 IEEE International Conference on Acoustics, Speech and Signal Processing, April 19-24, 2009, Taipei, Taiwan, China. New York: IEEE, 1169-1172(2009).
[46] Wakin M, Laska J N, Duarte M F, coding[C/OL]. [S.l.: s.n.] et al. 2019-09-08]. https://www.researchgate.net/publication/220043723_Compressive_Imaging_for_Video_Representation_and_. Coding.(2006).
[47] Sankaranarayanan A C, Xu L N, Studer C et al. Video compressive sensing for spatial multiplexing cameras using motion-flow models[J]. SIAM Journal on Imaging Sciences, 8, 1489-1518(2015).
[48] Fowler J E, Mun S, Tramel E W. Block-based compressed sensing of images and video[J]. Foundations and Trends © in Signal Processing, 4, 297-416(2010).
[49] Raginsky M, Willett R M, Harmany Z T et al. Compressed sensing performance bounds under Poisson noise[J]. IEEE Transactions on Signal Processing, 58, 3990-4002(2010).
[50] Amann M C, Bosch T M, Lescure M et al. Laser ranging: a critical review of usual techniques for distance measurement[J]. Optical Engineering, 40, 10-19(2001).
[51] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision. [C]//Proc 17th Intl Joint Conf on Artificial Intelligence(IJCAI) 1981, August 24-28, 1981, Vancouver, British Columbia. [S.l.: s.n.], 674-679(1981).
[54] Kirmani A, Colaço A. Wong F N C, et al. Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor[J]. Optics Express, 19, 21485-21507(2011).
[58] Ren X M, Li L, Dang E S. Compressive sampling and gated viewing three-dimensional laser radar[J]. Journal of Physics: Conference Series, 276, 012142(2011).
[59] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016).
[60] Li F Q, Chen H J, Pediredla A et al. CS-ToF: high-resolution compressive time-of-flight imaging[J]. Optics Express, 25, 31096-31110(2017).
[61] Babbitt W R, Barber Z W, Renner C. Compressive laser ranging[J]. Optics Letters, 36, 4794-4796(2011).
[62] Ke J, Lam E Y. Temporal super-resolution full waveform LiDAR. [C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), June 25-28, 2018, Orlando, Florida, United States. Washington, D.C.: OSA, CTh3C, 1(2018).
[64] Koller R, Schmid L, Matsuda N et al. High spatio-temporal resolution video with compressed sensing[J]. Optics Express, 23, 15992-16007(2015).
[65] Yuan X, Sun Y Y, Pang S. Compressive video sensing with side information[J]. Applied Optics, 56, 2697-2704(2017).
[66] Chen Y T, Tang C Y, Xu Z H et al. Adaptive reconstruction for coded aperture temporal compressive imaging[J]. Applied Optics, 56, 4940-4947(2017).
[67] Zhou Q, Ke J, Lam E Y. Near-infrared temporal compressive imaging for video[J]. Optics Letters, 44, 1702-1705(2019).
[68] Zhou Q, Ke J, Lam E Y. Dual-waveband temporal compressive imaging. [C]//Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), June 24-27, 2019, Munich, Germany. Washington, D.C.: OSA, CTu2A, 8(2019).
[70] Liu Y, Yuan X, Suo J L et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2990-3006(2019).
[71] Zhang J, Xiong T, Tran T et al. Compact all-CMOS spatiotemporal compressive sensing video camera with pixel-wise coded exposure[J]. Optics Express, 24, 9013-9024(2016).
[72] Courtney-Pratt J S. A review of the methods of high-speed photography[J]. Reports on Progress in Physics, 20, 379-432(1957).
[73] Field J E. High-speed photography[J]. Contemporary Physics, 24, 439-459(1983).
[74] Liang J Y, Wang L V. Single-shot ultrafast optical imaging[J]. Optica, 5, 1113-1127(2018).
[76] Mikami H, Gao L, Goda K. Ultrafast optical imaging technology: principles and applications of emerging methods[J]. Nanophotonics, 5, 497-509(2016).
[78] Wagadarikar A, John R, Willett R et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 47, B44-B51(2008).
[79] Correa C V, Arguello H, Arce G R. Snapshot colored compressive spectral imager[J]. Journal of the Optical Society of America A, 32, 1754-1763(2015).
[80] Fu C, Don M L, Arce G R. Compressive spectral imaging via polar coded aperture[J]. IEEE Transactions on Computational Imaging, 3, 408-420(2017).
[81] Galvis L, Lau D, Ma X et al. Coded aperture design in compressive spectral imaging based on side information[J]. Applied Optics, 56, 6332-6340(2017).
[82] Mao T Y, Cuadros A, Ma X et al. Coded aperture optimization in X-ray tomography via sparse principal component analysis[J]. IEEE Transactions on Computational Imaging, 1(2019).
[83] Parada-Mayorga A, Arce G R. Colored coded aperture design in compressive spectral imaging via minimum coherence[J]. IEEE Transactions on Computational Imaging, 3, 202-216(2017).
[84] Arguello H, Arce G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 22, 941-954(2012).
[85] Correa C V, Arguello H, Arce G R. Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging[J]. Journal of the Optical Society of America A, 33, 2312-2322(2016).
[86] Bian L, Suo J, Situ G et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 24752(2016).
[87] Arnob M M P, Nguyen H, Han Z et al. Compressed sensing hyperspectral imaging in the 0.9-2.5 μm shortwave infrared wavelength range using a digital micromirror device and InGaAs linear array detector[J]. Applied Optics, 57, 5019-5024(2018).
[88] Padgett M J, Boyd R W. An introduction to ghost imaging: quantum and classical[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160233(2017).
[89] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).
[90] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).
[91] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009).
[92] Erkmen B I, Shapiro J H. Ghost imaging: from quantum to classical to computational[J]. Advances in Optics and Photonics, 2, 405-450(2010).
[93] Katkovnik V, Astola J. Compressive sensing computational ghost imaging[J]. Journal of the Optical Society of America A, 29, 1556-1567(2012).
[94] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).
[95] Durán V, Soldevila F, Irles E et al. Compressive imaging in scattering media[J]. Optics Express, 23, 14424-14433(2015).
[96] Gong W, Zhao C, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).
[97] Zhao C, Gong W, Chen M et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012).
[98] Gong W L, Han S S. High-resolution far-field ghost imaging via sparsity constraint[J]. Scientific Reports, 5, 9280(2015).
[100] Shi D F, Hu S X, Wang Y J. Polarimetric ghost imaging[J]. Optics Letters, 39, 1231-1234(2014).
[101] Zhao S, Wang L, Liang W et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 353, 90-95(2015).
[102] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017).
[103] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).
[104] Brady D J, Choi K, Marks D L et al. Compressive holography[J]. Optics Express, 17, 13040-13049(2009).
[105] Cull C F, Wikner D A, Mait J N et al. Millimeter-wave compressive holography[J]. Applied Optics, 49, E67-E82(2010).
[106] Qiao L B, Wang Y X, Shen Z J et al. Compressive sensing for direct millimeter-wave holographic imaging[J]. Applied Optics, 54, 3280-3289(2015).
[107] Rivenson Y, Stern A, Javidi B. Overview of compressive sensing techniques applied in holography [Invited][J]. Applied Optics, 52, A423-A432(2013).
[108] Chen W S, Tian L, Rehman S et al. Empirical concentration bounds for compressive holographic bubble imaging based on a Mie scattering model[J]. Optics Express, 23, 4715-4725(2015).
[109] Wang Z H, Spinoulas L, He K et al. Compressive holographic video[J]. Optics Express, 25, 250-262(2017).
[110] Endo Y, Shimobaba T, Kakue T et al. GPU-accelerated compressive holography[J]. Optics Express, 24, 8437-8445(2016).
[111] Rivenson Y, Wu Y C, Wang H D et al. Sparsity-based multi-height phase recovery in holographic microscopy[J]. Scientific Reports, 6, 37862(2016).
[112] Zhang W H, Cao L C, Brady D J et al. Twin-image-free holography: a compressive sensing approach[J]. Physical Review Letters, 121, 093902(2018).
[113] Lohit S, Kulkarni K, Kerviche R et al. Convolutional neural networks for noniterative reconstruction of compressively sensed images[J]. IEEE Transactions on Computational Imaging, 4, 326-340(2018).
[115] Iliadis M, Spinoulas L, Katsaggelos A K. Deep fully-connected networks for video compressive sensing[J]. Digital Signal Processing, 72, 9-18(2018).
[116] Mahalanobis A, Shilling R, Muise R et al. High-resolution imaging using a translating coded aperture[J]. Optical Engineering, 56, 084106(2017).
[117] Tsai T H, Llull P, Yuan X et al. Spectral-temporal compressive imaging[J]. Optics Letters, 40, 4054-4057(2015).
[118] Sun Y Y, Yuan X, Pang S. Compressive high-speed stereo imaging[J]. Optics Express, 25, 18182-18190(2017).
[119] Zhang Z B, Liu S J, Peng J Z et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 5, 315-319(2018).
Get Citation
Copy Citation Text
Jun Ke, Linxia Zhang, Qun Zhou. Applications of Compressive Sensing in Optical Imaging[J]. Acta Optica Sinica, 2020, 40(1): 0111006
Category: Special Issue on Computational Optical Imaging
Received: Sep. 9, 2019
Accepted: Nov. 21, 2019
Published Online: Jan. 6, 2020
The Author Email: Ke Jun (jke@bit.edu.cn)