Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1837007(2024)

Two-Branch Feature Fusion Image Dehazing Algorithm Under Brightness Constraint

Jinqing He1, Xiucheng Dong1,2、*, Xianming Xiang1, Hongda Guo1, and Yaling Ju1
Author Affiliations
  • 1School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, Sichuan, China
  • 2School of Electrical and Electronic Information Engineering, Jinjiang College Sichuan University, Meishan 620860, Sichuan, China
  • show less
    Figures & Tables(13)
    Overall network architecture of proposed algorithm
    Brightness attention generation network
    Data comparison before and after Gammar correction. (a) Comparison of brightness distribution of hazy images in datasets before and after Gamma correction; (b) comparison of brightness distribution of standard fog free images in datasets before and after Gamma correction; (c) comparison example of hazy images before and after Gamma correction; (d) comparison of standard fog free images before and after Gamma correction
    Partial experimental results of SOTS dataset. (a) Hazy images; (b) DCP; (c) CAP; (d) DehazeNet; (e) AOD-Net; (f) GCANet; (g) FFA; (h) TBD; (i) proposed algorithm; (j) standard fog free images
    Partial experimental results of DENSE-HAZE dataset. (a) Hazy images; (b) DCP; (c) CAP; (d) DehazeNet; (e) AOD-Net; (f) GCANet;(g) FFA; (h) TBD; (i) proposed algorithm; (j) standard fog free images
    Partial experimental results of NH-HAZE 2020 dataset. (a) Hazy images; (b) DCP; (c) CAP; (d) DehazeNet; (e) AOD-Net; (f) GCANet;(g) FFA; (h) TBD; (i) proposed algorithm; (j) standard fog free images
    Partial experimental results of NH-HAZE 2023 dataset. (a) Hazy images; (b) DCP; (c) CAP; (d) DehazeNet; (e) AOD-Net; (f) GCANet; (g) FFA; (h) TBD; (i) proposed algorithm; (j) standard fog free images
    Partial results of image rocovery on real no-reference hazy images of NH-HAZE 2021 dataset. (a) Hazy images; (b) DCP; (c) CAP; (d) DehazeNet; (e) AOD-Net; (f) GCANet; (g) FFA; (h) TBD; (i) proposed algorithm
    • Table 1. Details of real haze datasets used in experiment

      View table

      Table 1. Details of real haze datasets used in experiment

      DatasetsTraining setValidation setTest setImage size /(pixel×pixel)
      DENSE-HAZE45551600×1200
      NH-HAZE 202045551600×1200
      NH-HAZE 2021255(w/o GT)5(w/o GT)1600×1200
      NH-HAZE 2023405(w/o GT)5(w/o GT)6000×4000
    • Table 2. Quantitative comparison between proposed method and five ablation methods

      View table

      Table 2. Quantitative comparison between proposed method and five ablation methods

      AlgorithmImageNet pre-trainingBrightness correctPSNR /dB(↑)SSIM(↑)
      1)Res2Net+DFB21.380.6955
      2)Swin Transformer+DFB22.250.6841
      3)ConvNeXt+DFB22.840.7220
      4)ConvNeXt SK DFB×18.520.6631
      5)ConvNeXt SK DFB×22.510.7250
      6)Proposed algorithm22.930.7293
    • Table 3. Results comparison of loss function ablation experiment

      View table

      Table 3. Results comparison of loss function ablation experiment

      GroupLl1Ll1,aLpercLMS-SSIMLadvPSNR /dB(↑)SSIM↑
      122.930.7293
      2×22.870.7293
      3×22.790.7289
      4××22.600.7259
      5×××22.440.7130
    • Table 4. Quantitative comparison over synthetic and real haze datasets for different methods

      View table

      Table 4. Quantitative comparison over synthetic and real haze datasets for different methods

      AlgorithmSOTSDENSE-HAZENH-HAZE 2020NH-HAZE 2021NH-HAZE 2023
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      DCP17.050.862610.010.412712.260.452111.490.637710.890.4984
      CAP18.270.797011.380.430213.010.428912.630.643710.770.5319
      DehazeNet22.380.877011.730.438212.820.452012.840.649310.960.5047
      AOD-Net22.140.894212.690.452614.810.461916.290.684014.570.5505
      GCANet30.230.965212.460.432314.010.480312.660.623111.730.5194
      FFA35.320.983416.270.530817.600.621819.870.792018.230.5840
      TBD34.860.984816.360.582021.530.695521.660.842120.100.7323
      Proposed35.010.990116.780.588622.930.729321.010.879825.110.7790
    • Table 5. Quantitative comparison of dehazing results on real no-reference hazy images for each algorithm

      View table

      Table 5. Quantitative comparison of dehazing results on real no-reference hazy images for each algorithm

      MetricsDCPCAPDehazeNetAOD-NetGCANetFFATBDProposed algorithm
      e2.4501.4481.9362.2953.2740.9113.4273.552
      r¯1.9991.5111.7581.8152.0361.3614.2584.515
      σ0.0980.0052.6221.6660.0670.0070.0160.285
      FADE0.3010.5960.1960.6160.2880.8800.2710.196
    Tools

    Get Citation

    Copy Citation Text

    Jinqing He, Xiucheng Dong, Xianming Xiang, Hongda Guo, Yaling Ju. Two-Branch Feature Fusion Image Dehazing Algorithm Under Brightness Constraint[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1837007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Jan. 2, 2024

    Accepted: Feb. 5, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Xiucheng Dong (dxc136@163.com)

    DOI:10.3788/LOP240436

    CSTR:32186.14.LOP240436

    Topics