Laser & Optoelectronics Progress, Volume. 60, Issue 23, 2300003(2023)
Progress of Research on Roughness of Inner Wall of Air Hole of Hollow-Core Microstructure Optical Fiber
[1] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2, 315-340(2013).
[2] Kolyadin A N, Kosolapov A F, Pryamikov A D et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region[J]. Optics Express, 21, 9514-9519(2013).
[3] Cregan R F, Mangan B J, Knight J C et al. Single-mode photonic band gap guidance of light in air[J]. Science, 285, 1537-1539(1999).
[4] Chen X Y, Ding W, Wang Y Y et al. High-fidelity, low-latency polarization quantum state transmissions over a hollow-core conjoined-tube fiber at around 800 nm[J]. Photonics Research, 9, 460-470(2021).
[5] Cui Y L, Huang W, Zhou Z Y et al. Highly efficient and stable coupling of kilowatt-level continuous wave laser into hollow-core fibers[J]. Chinese Optics Letters, 20, 040602(2022).
[6] Xiong D Q, Luo J Q, Hassan M R A et al. Low-energy-threshold deep-ultraviolet generation in a small-mode-area hollow-core fiber[J]. Photonics Research, 9, 590-595(2021).
[7] Zhu X Y, Yu F, Wu D K et al. Low-threshold continuous operation of fiber gas Raman laser based on large-core anti-resonant hollow-core fiber[J]. Chinese Optics Letters, 20, 071401(2022).
[8] Machnev A A, Pushkarev A P, Tonkaev P et al. Modifying light-matter interactions with perovskite nanocrystals inside antiresonant photonic crystal fiber[J]. Photonics Research, 9, 1462-1469(2021).
[9] Dangui V, Digonnet M J F, Kino G. Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers[J]. Journal of Lightwave Technology, 27, 3783-3789(2009).
[10] Jasion G T, Sakr H, Hayes J R et al. 0.174 dB/km hollow core double nested antiresonant nodeless fiber (DNANF)[C], Th4C.7(2022).
[11] Osório J H, Amrani F, Delahaye F et al. Hollow-core fibers with ultralow loss in the ultraviolet range and sub-thermodynamic equilibrium surface-roughness[C], SW4K.6(2022).
[12] Wang X, Lou S Q, Xing Z. Loss characteristic of hollow core photonic bandgap fiber[J]. Infrared and Laser Engineering, 48, S218001(2019).
[13] Debord B, Amsanpally A, Chafer M et al. Ultralow transmission loss in inhibited-coupling guiding hollow fibers[J]. Optica, 4, 209-217(2017).
[14] Jackle J, Kawasaki K. Intrinsic roughness of glass surfaces[J]. Journal of Physics: Condensed Matter, 7, 4351-4358(1995).
[15] Roberts P J, Couny F, Sabert H et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 13, 236-244(2005).
[16] Aghaie K Z, Digonnet M J F, Fan S H. Modeling loss and backscattering in a photonic-bandgap fiber using strong perturbation[J]. Proceedings of SPIE, 8632, 86320K(2013).
[17] Youngworth R N, Gallagher B B, Stamper B L. An overview of power spectral density (PSD) calculations[J]. Proceedings of SPIE, 5869, 58690U(2005).
[18] Shen Z X, Wang Z S, Ma B et al. Specifying surface roughness of optical film substrate using the power spectral density[J]. Optical Instruments, 28, 141-145(2006).
[19] Bresson B, Brun C, Buet X et al. Anisotropic superattenuation of capillary waves on driven glass interfaces[J]. Physical Review Letters, 119, 235501(2017).
[20] Yue J Y, Wang T S, Li S W. Using the power spectral density to evaluate the surface roughness of optical element ion beam polishing[J]. Optical Technique, 43, 208-211(2017).
[21] Duparré A, Ferre-Borrull J, Gliech S et al. Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components[J]. Applied Optics, 41, 154-171(2002).
[22] Fokoua E N, Sandoghchi S R, Chen Y et al. Accurate modelling of fabricated hollow-core photonic bandgap fibers[J]. Optics Express, 23, 23117-23132(2015).
[23] West J A, Smith C M, Borrelli N F et al. Surface modes in air-core photonic band-gap fibers[J]. Optics Express, 12, 1485-1496(2004).
[24] Fokoua E N, Poletti F, Richardson D J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers[J]. Optics Express, 20, 20980-20991(2012).
[25] Numkam E, Poletti F, Richardson D J. Dipole radiation model for surface roughness scattering in hollow-core fibers[C], JW2A.18(2012).
[26] Benningshof O W B, Nguyen D H, Dadema M R et al. Characterization of the channel walls roughness in photonic crystal fibers[J]. Physica E: Low-Dimensional Systems and Nanostructures, 66, 33-39(2015).
[27] Phan-Huy M C, Moison J M, Levenson J A et al. Surface roughness and light scattering in a small effective area microstructured fiber[J]. Journal of Lightwave Technology, 27, 1597-1604(2009).
[28] Buet X, Brun C, Gâteau J et al. Nondestructive measurement of the roughness of the inner surface of hollow core-photonic bandgap fibers[J]. Optics Letters, 41, 5086-5089(2016).
[29] Yu H J, Cui Y M, Wang R M. Principle, application and development of focused ion beam system[J]. Journal of Chinese Electron Microscopy Society, 27, 243-249(2008).
[30] Parikh N M. Effect of atmosphere on surface tension of glass[J]. Journal of the American Ceramic Society, 41, 18-22(1958).
[31] Gris-Sánchez I, Mangan B J, Knight J C. Reducing spectral attenuation in solid-core photonic crystal fibers[C], OWK1(2010).
[32] Wu C F, Qian Y G, Shen Y C et al. The process of reducing single mode fiber loss[J]. Optical Fiber & Electric Cable and Their Applications, 31-33(2014).
[33] Gris-Sánchez I, Mangan B J, Knight J C. Reducing spectral attenuation in small-core photonic crystal fibers[J]. Optical Materials Express, 1, 179-184(2011).
[34] Frosz M H, Ahmed G, Lapshina N et al. Reducing losses in solid-core photonic crystal fibers using chlorine dehydration[J]. Optical Materials Express, 6, 2975-2983(2016).
[35] Derks D, Aarts D G A L, Bonn D et al. Suppression of thermally excited capillary waves by shear flow[J]. Physical Review Letters, 97, 038301(2006).
[36] Thiébaud M, Bickel T. Nonequilibrium fluctuations of an interface under shear[J]. Physical Review E, 81, 031602(2010).
Get Citation
Copy Citation Text
Shijie Xu, Huijia Zhang, Peng Yang, Lu Pang, Yongqing Yi, Ding Ning. Progress of Research on Roughness of Inner Wall of Air Hole of Hollow-Core Microstructure Optical Fiber[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2300003
Category: Reviews
Received: Nov. 30, 2022
Accepted: Dec. 28, 2022
Published Online: Nov. 27, 2023
The Author Email: Shijie Xu (13752798097@163.com)