APPLIED LASER, Volume. 42, Issue 1, 83(2022)

Detection and Evolution Analysis of ARJ21 Wake Vortex in the Near-ground Stage

Wang Xuan*, Pan Weijun, Wang Hao, and Luo Yuming
Author Affiliations
  • [in Chinese]
  • show less
    References(21)

    [1] [1] ROSSOW V J. Lift-generated vortex wakes of subsonic transport aircraft[J]. Progress in Aerospace Sciences, 1999, 35(6): 507-660.

    [2] [2] PAN W J, ZHANG Q Y, ZHANG Q, et al. Identification method of aircraft wake vortex based on doppler lidar[J]. Laser Technology, 2019, 43(2): 233-237.

    [4] [4] LIN M D, CUI G X, ZHANG Z S, et al. Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1185-1200.

    [5] [5] PERRY R, HINTON D, STUEVER R, et al. NASA wake vortex research for aircraft spacing[C]//35th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA. Reston,Virigina: AIAA, 1997: 97-0057.

    [6] [6] HALLOCK J N, HOLZPFEL F. A review of recent wake vortex research for increasing airport capacity[J]. Progress in Aerospace Sciences, 2018, 98: 27-36.

    [7] [7] MATAYOSHI N. Dynamic wake vortex separation according to weather conditions[C]//2013 Aviation Technology, Integration, and Operations Conference. August 12-14, 2013, Los Angeles, CA. Reston, Virginia: AIAA, 2013: 4425.

    [8] [8] MATAYOSHI N, YOSHIKAWA E. Dynamic wake vortex separation combining with AMAN/DMAN concept[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Dallas, TX. Reston, Virginia: AIAA, 2015: 3397.

    [9] [9] FU J, LI J, WU Q. Application and prospect of dopplar lidar in the wind field observation[J]. Acta Aerodynamica Sinica, 2021, 39(4): 172-179.

    [10] [10] SHEN C, GAO H, WANG X S, et al. Aircraft wake vortex parameter-retrieval system based on lidar[J]. Journal of Radars, 2020, 9(6): 1032-1044.

    [11] [11] GAO H. Parameter-retrieval of dry-air wake vortices with a scanning doppler lidar[D]. Changsha:National University of Defense Technology,2018.

    [12] [12] CAI Z Y, JIN C Q. Object contour recognition based on 2D lidar point cloud[J]. Applied Laser, 2020, 40(3): 513-518.

    [16] [16] PAN W J, DUAN Y J, ZHANG Q, et al. Research on aircraft wake vortex recognition using AlexNet[J]. Opto-Electronic Engineering, 2019, 46(7): 190082.

    [18] [18] PAN W J, WU Z Y, ZHANG X L. Identification of aircraft wake vortex based onk-nearest neighbor[J]. Laser Technology, 2020, 44(4): 471-477.

    [20] [20] HARVEY J K, PERRY F J. Flowfield produced by trailing vortices in the vicinity of the ground[J]. AIAA Journal, 1971, 9(8): 1659-1660.

    [21] [21] LIN M D, HUANG W X, ZHANG Z S, et al. Numerical study of aircraft wake vortex evolution near ground in stable atmospheric boundary layer[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1866-1876.

    CLP Journals

    [1] Gu Runping, Lu Tong. Aircraft Wake Vortex Scanning Characteristics and Improvement of Vortex Core Position Estimation Method[J]. APPLIED LASER, 2023, 43(10): 156

    Tools

    Get Citation

    Copy Citation Text

    Wang Xuan, Pan Weijun, Wang Hao, Luo Yuming. Detection and Evolution Analysis of ARJ21 Wake Vortex in the Near-ground Stage[J]. APPLIED LASER, 2022, 42(1): 83

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 8, 2021

    Accepted: --

    Published Online: Aug. 5, 2022

    The Author Email: Xuan Wang (atcxuan@cafuc.edu.cn)

    DOI:10.14128/j.cnki.al.20224201.083

    Topics