Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1217001(2023)

Disease Classification Algorithm of Chest X-Ray Based on Efficient Channel Attention

Lingyun Shao1, Qiang Li1, Xin Guan1、*, and Xuewen Ding2
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Tianjin Fieldbus Control Technology Engineering Center, Tianjin Vocational and Technical Normal University, Tianjin 300222, China
  • show less
    Figures & Tables(11)
    Framework diagram of chest disease classification network
    Structure of DECA
    5-layer dense connected block, each layer taking all the preceding feature-maps as input
    Efficient channel attention module
    Schematic diagram of asymmetric convolution
    X-ray images in Chest X-ray 15 dataset. (a) No finding; (b) pneumonia;(c) COVID-19; (d) cardiomegaly; (e) hernia; (f) infiltration;(g) nodule; (h) emphysema; (i) effusion; (j) pleural thickening; (k) pneumothorax; (l) mass; (m) fibrosis; (n) edema; (o) consolidation
    ROC curve and AUC value of proposed algorithm. (a) Atelectasis; (b) cardiomegaly; (c) effusion; (d) infiltration; (e) mass; (f) nodule; (g) pneumonia; (h) pneumothorax; (i) consolidation; (j) edema; (k) emphysema; (l) fibrosis; (m) pleural thickening: (n) hernia; (o) COVID-19
    • Table 1. Specific structure of DECA-Net

      View table

      Table 1. Specific structure of DECA-Net

      LayerOutput sizeDECANet-121
      Convolution112×1127×7 Conv,stride 2
      Pooling56×563×3 max pool,stride 2
      DECA block 156×56GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×6
      Transition layer 156×561×1 Conv
      28×282×2 average pool,stride 2
      DECA block 228×28GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×12
      Transition layer 228×281×1 Conv
      14×142×2 average pool,stride 2
      DECA block 314×14GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×24
      Transition layer 314×141×1 Conv
      7×72×2 average pool,stride 2
      DECA block 47×7GAP1×1 Conv×kSigmoid1×1 Conv3×3 ACB×16
      Classification layer1×17×7 global average pool,stride 2
      15 fully-connected
    • Table 2. Comparison of classification results of different classification network models on Chest X-ray 15

      View table

      Table 2. Comparison of classification results of different classification network models on Chest X-ray 15

      NetworkBackboneAverage AUC
      ResNet50ResNet500.7468
      ResNet50+SEResNet500.7642
      ResNet50+ECA DenseNet121

      ResNet50

      DenseNet121

      0.7886

      0.7952

      DenseNet121+SE10DenseNet1210.8014
      DECA-NetDenseNet1210.8245
    • Table 3. Comparison of AUC value of different chest disease classification algorithms on Chest X-ray 14 dataset

      View table

      Table 3. Comparison of AUC value of different chest disease classification algorithms on Chest X-ray 14 dataset

      DiseaseAlgorithm of reference[9Algorithm of reference[10Algorithm of reference[13Algorithm of reference[18Algorithm of reference[19Algorithm of reference[20Algorithm of reference[21Proposedalgorithm
      Atelectasis0.70030.76270.7850.7670.7830.7910.7850.8157
      Cardiomegaly0.810.88350.87660.8830.8840.8980.8870.8657
      Effusion0.75850.81590.86280.8280.8320.8730.8310.8701
      Infiltration0.66140.67860.6730.7090.7080.7000.7030.6948
      Mass0.69330.80120.8040.8210.8370.8320.8330.8350
      Nodule0.66870.72930.72990.7580.8000.7580.7980.7683
      Pneumonia0.6580.70970.74230.7310.7350.7670.7310.7548
      Pneumothorax0.79930.83770.84260.8460.8660.8590.8810.8687
      Consolidation0.70320.74430.78460.7450.7460.8000.7540.7952
      Edema0.80520.84140.87270.8350.8410.8890.8490.8647
      Emphysema0.8330.88360.8580.8950.9370.8910.9300.8942
      Fibrosis0.78590.80070.77540.8180.820.7890.8330.8141
      Pleural thickening0.68350.75360.75630.7610.7960.7710.7820.7872
      Hernia0.87170.87630.86450.8960.8950.8960.9210.9027
      Mean0.74510.79410.8020.8070.820.8220.8230.8237
    • Table 4. Comparison of ablation experiment results

      View table

      Table 4. Comparison of ablation experiment results

      DiseaseNetwork_1Network_2Network_3Network_4DECA-Net
      Atelectasis0.78530.78380.79740.80730.8101
      Cardiomegaly0.87700.87020.88130.88770.8919
      Effusion0.85410.84980.86140.86890.8701
      Infiltration0.66960.67240.68450.69460.6892
      Mass0.81280.80900.83060.83020.8301
      Nodule0.7390.72440.75950.75340.7672
      Pneumonia0.72820.73550.74500.74120.7389
      Pneumothorax0.85460.86230.87430.88060.8829
      Consolidation0.78180.78490.79080.79750.7931
      Edema0.86330.88720.87260.88050.8782
      Emphysema0.87420.88290.89240.90230.9122
      Fibrosis0.77220.78920.78590.7960.8054
      Pleural thickening0.76070.77880.76270.77070.7851
      Hernia0.85710.90110.90040.86780.8893
      COVID-190.82650.81570.82730.83570.8239
      Mean0. 80380.80980.81770.82100.8245
    Tools

    Get Citation

    Copy Citation Text

    Lingyun Shao, Qiang Li, Xin Guan, Xuewen Ding. Disease Classification Algorithm of Chest X-Ray Based on Efficient Channel Attention[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1217001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: Feb. 17, 2022

    Accepted: May. 25, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Xin Guan (guanxin@tju.edu.cn)

    DOI:10.3788/LOP220759

    Topics