Chinese Journal of Lasers, Volume. 43, Issue 9, 902001(2016)
Microstructure and Mechanical Property of A7N01 Aluminum Alloy Joints by Fiber Laser-Variable Polarity TIG Hybrid Welding with Filler Wire
[1] [1] Nakai M, Eto T. New aspects of development of high strength aluminum alloys for aerospace applications[J]. Materials Science and Engineering: A, 2000, 285(1): 62-68.
[2] [2] Deng Bo, Zhong Yi, Qi Huarong, et al. Experiment on high speed reverse-extrusion of 7N01 aluminum alloy[J]. Yunnan Metallurgy, 2006, 35(4): 50-52.
[3] [3] Liu Juncheng, Jin Longbin, He Zhenbo, et al. Hot deformation behavior of 7N01 aluminum alloy[J]. Chinese Journal of Rare Metals, 2011, 35(6): 812-817.
[4] [4] Kalita S J. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351[J]. Applied Surface Science, 2011, 257(9): 3985-3997.
[5] [5] Zuo Tiechuan. Laser materials processing of high strength aluminum alloys[M]. Beijing: National Defense Industry Press, 2008.
[6] [6] Zhu Jialei, Xu Shilong, Jiao Xiangdong, et al. Study on laser lap welding of 304 stainless steel sheet[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071404.
[8] [8] Gao M, Zeng X Y, Yan J, et al. Microstructure characteristics of laser-MIG hybrid welded mild steel[J]. Applied Surface Science, 2008, 254(18): 5715-5721.
[9] [9] Tao Chuanqi, Wang Ren, Cui Yunlong. Comparison of 15 mm thick A7N01 aluminum alloy MIG with laser-MIG composite welding[J]. Electric Welding Machine, 2015, 45(1): 108-110.
[10] [10] Wang Xiaonan, Chen Changjun, Zhu Guangjiang, et al. Research progress on laser-arc hybrid welding of steel[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030008.
[11] [11] Vaidya W V, Angamuthu K, Koak M, et al. Strength and fatigue resistance of laser-MIG hybrid butt welds of an airframe aluminium ally AA6013[J]. Welding in the World, 2006, 50(11): 88-97.
[12] [12] Yan S H, Nie Y, Zhu Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al-Mg alloy joints[J]. Applied Surface Science, 2014, 298(15): 12-18.
[13] [13] Ghosh P K, Gupta S R, Gupta P C, et al. Fatigue characteristics of pulsed MIG welded Al-Zn-Mg alloy[J]. Journal of Materials, 1991, 26(22): 616l-6170.
[14] [14] Li Fei. Study on the technology and mechanism of 5083 aluminum alloy fiber laser TIG hybrid welding[D]. Beijing: Beijing University of Technology, 2014.
[15] [15] Wang Qiming, Qiao Junnan, Zou Jianglin, et al. Fiber laser-VPTIG hybrid welding of A7N01 aluminum alloy with filler wire[J]. Chinese J Lasers, 2016, 43(6): 0602004.
[17] [17] Berg L K, Gjnnes J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J]. Acta Materiialia, 2001, 49(17): 3443-3451.
[18] [18] Zhang Jianbo, Zhang Yong′an, He Zhenbo, et al. Effect of natural aging on microstructure and properties of 7N01 aluminum alloy[J]. Rare Metals, 2012, 36(2): 191-195.
[19] [19] Wu Peiqing. Effect of heat treatment on the properties of 7N01 aluminum alloy[D]. Changsha: Central South University, 2000.
[20] [20] Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Material & Design, 2002, 23(2): 129-139.
Get Citation
Copy Citation Text
Qiao Junnan, Wang Qiming, Zou Jianglin, Wu Shikai. Microstructure and Mechanical Property of A7N01 Aluminum Alloy Joints by Fiber Laser-Variable Polarity TIG Hybrid Welding with Filler Wire[J]. Chinese Journal of Lasers, 2016, 43(9): 902001
Category: laser manufacturing
Received: Apr. 25, 2016
Accepted: --
Published Online: May. 25, 2018
The Author Email: Qiao Junnan (1216726646@qq.com)