Acta Optica Sinica, Volume. 43, Issue 5, 0506001(2023)

φ-OTDR Pattern Recognition Based on LSTM-CNN

Ming Wang1, Zhou Sha1, Hao Feng1、*, Lipu Du2, and Dunzhe Qi2
Author Affiliations
  • 1State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Ningxia Hui Autonomous Region Water Conservancy Engineering Construction Center, Yinchuan 750004, Ningxia , China
  • show less
    Figures & Tables(18)
    Structure diagram of φ-OTDR
    Comparison of the data presentation form between the time-space map and the time-domain curve
    Operation process of CNN and LSTM. (a) 1D convolution; (b) 2D convolution; (c) LSTM
    Schematic of the internal structure of φ-OTDR integrated system
    Structure diagram of BRNN (LSTM)
    Training situation and test results of LSTM. (a) Curve of loss function with dynamic learning rate; (b) curve of loss function with fixed learning rate; (c) background noise; (d) excavation signal; (e) motor vibration signal; (f) walking signal
    STFT results of target signals. (a) Background noise; (b) excavation signal; (c) motor vibration signal; (d) walking signal
    Network structure of LSTM-CNN
    Comparison of overall evaluation indicators. (a) Train accuracy; (b) test accuracy; (c) train loss; (d) test loss
    Recall comparison of test set. (a) Background noise; (b) excavation signal; (c) motor vibration signal; (d) walking signal
    Precision comparison of test set. (a) Background noise; (b) excavation signal; (c) motor vibration signal; (d) walking signal
    Precision of validation sample. (a) Background noise; (b) excavation signal; (c) motor vibration signal; (d) walking signal
    Recall of validation sample. (a) Background noise; (b) excavation signal; (c) motor vibration signal; (d) walking signal
    Precision of validation sample of models in Table 3. (a) Background noise; (b) excavation signal; (c) motor vibration signal;(d) walking signal
    Recall of validation sample of models in Table 3. (a) Background noise; (b) excavation signal; (c) motor vibration signal; (d) walking signal
    • Table 1. Important parameters of different neural network structures

      View table

      Table 1. Important parameters of different neural network structures

      Net numberNet structureInputNumber of CNN layersLayer nodeLearning rate
      1ANNTime-domain sequence0360.01
      2ANNSTFT2800.05
      3ANNTime-domain sequence + STFT2880.03
      4CNNTime-domain sequence + STFT4900.001
      5LSTM-CNNTime-domain sequence + STFT4900.001
    • Table 2. Distribution of identification results and accuracy of the verification samples

      View table

      Table 2. Distribution of identification results and accuracy of the verification samples

      Sample typeNumber of sample points

      Accuracy /

      %

      NoiseExcavationMotor vibrationWalking
      Original327218478710
      Net 125216772046835.77
      Net 234018055066382.28
      Net 313614081537347.39
      Net 432819349369589.47
      Net 531522449369594.43
    • Table 3. Comparison of LSTM-CNN and common machine-learning models

      View table

      Table 3. Comparison of LSTM-CNN and common machine-learning models

      Model typeModel 1Model 2Model 3Model 4Model 5
      StructureLSTM-CNNSVMKNNDecision-treeRandom-forest
      Test accuracy /%94.6083.6583.7178.1787.38
      Validation accuracy /%94.4381.9865.6675.2483.26
    Tools

    Get Citation

    Copy Citation Text

    Ming Wang, Zhou Sha, Hao Feng, Lipu Du, Dunzhe Qi. φ-OTDR Pattern Recognition Based on LSTM-CNN[J]. Acta Optica Sinica, 2023, 43(5): 0506001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jul. 13, 2022

    Accepted: Sep. 26, 2022

    Published Online: Mar. 20, 2023

    The Author Email: Feng Hao (fenghao@tju.edu.cn)

    DOI:10.3788/AOS221468

    Topics