Chinese Journal of Lasers, Volume. 40, Issue 1, 104001(2013)
Super Resolution Microscopy of Offline g-STED Nanoscopy Based on Time-Correlated Single Photon Counting
[1] [1] E. Abbe, Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archivfür Mikroskopische Anatomie, 1873, 9(1): 413~418
[2] [2] Liu Yan, Xu Shengqi, Liu Weiwei. Application of two-photon fluorescence measurement on pulse characterization during femtosecond laser filamentation in air[J]. Acta Optica Sinica, 2011, 31(7): 0719002
[3] [3] Zhang Yunbo, Zheng Jihong, Jiang Yanmeng et al.. Near UV-band frequency division multiplexing detecting technique with fluorescence microscopy[J]. Acta Optica Sinica, 2011, 31(6): 0618002
[4] [4] S. W. Hell. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153~1158
[5] [5] Hao Xiang, Kuang Cuifang, Li Yanghui et al.. Reversible saturable optical transitions based fluorescence nanoscopy[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030005
[6] [6] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated-emission-stimulated-emission-depletion fluorescence microscopy[J]. Opt. Lett., 1994, 19(11): 780~782
[7] [7] Hao Xiang, Kuang Cuifang, Wang Tingting et al.. Optimization of 0/π phase plate in stimulated emission depletion microscopy[J]. Acta Optica Sinica, 2011, 31(3): 214~217
[8] [8] S. Galiani, B. Harke, G. Vicidomini et al.. Strategies to maximize the performance of a STED microscope[J]. Opt. Express, 2012, 20(7): 7362~7374
[9] [9] S. W. Hell, K. I. Willig, B. Harke et al.. STED microscopy with continuous wave beams[J]. Nat. Methods, 2007, 4(11): 915~918
[10] [10] P. Bingen, M. Reuss, J. Engelhardt et al.. Parallelized STED fluorescence nanoscopy[J]. Opt. Express, 2011, 19(24): 23716~23726
[12] [12] D. Wildanger, R. Medda, L. Kastrup et al.. A compact STED microscope providing 3D nanoscale resolution[J]. J. Microsc., 2009, 236(1): 35~43
[13] [13] G. Vicidomini, G. Moneron, K. Y. Han et al.. Sharper low-power STED nanoscopy by time gating[J]. Nature Methods, 2011, 8(7): 571~575
[14] [14] Wang Yan, Zhao Lingling, Chen Tongsheng et al.. Study on cell cycle using fluorescence lifetime imaging microscopic system based on a streak camera[J]. Chinese J. Lasers, 2011, 38(3): 132~137
[16] [16] E. Fiserova, M. Kubala. Mean fluorescence lifetime and its error[J]. J. Lumin., 2012, 132(8): 2059~2064
[17] [17] T. Iwata, H. Kiyoto, Y. Mizutani et al.. Comparison of pulsed-excitation and phase-modulation methods for estimating fluorescence lifetime values using a convolved-autoregressive model and a high-gain photomultiplier tube[J]. Opt. Rev., 2010, 17(6): 513~518
[18] [18] N. Joshi, V. O. de Joshi, S. Contreras et al.. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin[C]. SPIE, 1999, 3602: 124~131
[19] [19] C. Eggeling, A. Honigmann, M. Schulze. gSTED microscopy with an OPSL: cutting edge super-resolution[J]. Optik & Photonik, 2012, 7(2): 44~46
Get Citation
Copy Citation Text
Hao Xiang, Kuang Cuifang, Gu Zhaotai, Li Shuai, Liu Xu. Super Resolution Microscopy of Offline g-STED Nanoscopy Based on Time-Correlated Single Photon Counting[J]. Chinese Journal of Lasers, 2013, 40(1): 104001
Category: biomedical photonics and laser medicine
Received: Jul. 23, 2012
Accepted: --
Published Online: Dec. 5, 2012
The Author Email: Xiang Hao (caesarhx@gmail.com)