Spectroscopy and Spectral Analysis, Volume. 41, Issue 8, 2638(2021)

Rapid Classification of Steel by a Mobile Laser-Induced Breakdown Spectroscopy Based on Optical Fiber Delivering Laser Energy

Wen-xin LI1、*, Guang-hui CHEN1、1; 3;, Qing-dong ZENG1、1; 2; *;, Meng-tian YUAN1、1; 3;, Wu-guang HE1、1;, Ze-fang JIANG1、1;, Yang LIU1、1;, Chang-jiang NIE1、1;, Hua-qing YU1、1;, and Lian-bo GUO2、2;
Author Affiliations
  • 11. School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China
  • 22. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    Figures & Tables(9)
    LIBS system(a): Schematic; (b): Prototype
    The emission spectra of 14 types of special steel samples
    The prediction results by SVM
    The prediction results of normalized spectra by SVM
    The SVM prediction results using selecting 6 special spectral lines
    • Table 1. The concentration information of each element in 14 types of steel samples

      View table
      View in Article

      Table 1. The concentration information of each element in 14 types of steel samples

      编号CMnSiPCrNiMoVCu
      10.090.440.330.0078.640.20.90.190.11
      20.120.500.260.0061.100.180.270.20.09
      30.200.250.290.0052.570.20.350.020.07
      40.160.930.370.0070.241.120.310.0040.58
      50.410.540.190.0190.940.020.170.0060.03
      60.380.770.240.0211.020.020.20.0050.02
      70.110.470.370.0052.130.150.9400
      80.260.650.220.01800000
      90.191.570.310.0210000.0020
      100.3740.3720.2920.00531.5241.4190.25100.074
      110.4220.660.3490.0211.050.0660.1950.0120.063
      120.3990.36510.0135.020.2811.140.7890.094
      130.151.050.3770.010.1171.170.38400.605
      140.1070.3330.3270.0088.220.1230.90.2360.115
    • Table 2. The selected emission lines

      View table
      View in Article

      Table 2. The selected emission lines

      ElementWavelength(λ/nm)
      Ni300.249, 301.200, 305.082, 310.156, 313.410, 341.476, 344.626, 345.846, 346.165, 349.296, 351.505, 352.454, 356.637, 361.939
      Cr357.868, 359.348, 425.433, 427.481, 428.973
      Mn380.672, 403.176, 403.307, 403.449, 404.136
      Mo315.817, 317.034, 319.398, 320.884, 344.712, 378.825, 386.410, 390.295, 406.988, 418.832, 441.169, 550.649, 553.303, 557.044
      V318.341, 318.399, 318.538, 370.357, 385.584, 390.226, 411.518, 412.806, 413.199, 437.923, 438.471, 439.522, 440.850
    • Table 3. The 6 spectral lines with SVM prediction accuracy of 100%

      View table
      View in Article

      Table 3. The 6 spectral lines with SVM prediction accuracy of 100%

      ElementWavelength(λ/nm)
      Mn403.307
      Mo386.410
      V385.584
      Cr427.481, 357.868
      Ni352.454
    • Table 4. The average prediction accuracy and mean modeling time of SVM with different inputs

      View table
      View in Article

      Table 4. The average prediction accuracy and mean modeling time of SVM with different inputs

      InputAverage prediction
      accuracy/%
      Mean
      modeling time/s
      Preselected spectral data11.430.0173 23
      Normalized data95.710.018 579
      Optimal data of traversal1000.0108 56
    Tools

    Get Citation

    Copy Citation Text

    Wen-xin LI, Guang-hui CHEN, Qing-dong ZENG, Meng-tian YUAN, Wu-guang HE, Ze-fang JIANG, Yang LIU, Chang-jiang NIE, Hua-qing YU, Lian-bo GUO. Rapid Classification of Steel by a Mobile Laser-Induced Breakdown Spectroscopy Based on Optical Fiber Delivering Laser Energy[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2638

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Aug. 4, 2020

    Accepted: --

    Published Online: Sep. 8, 2021

    The Author Email: LI Wen-xin (3300144190@qq.com)

    DOI:10.3964/j.issn.1000-0593(2021)08-2638-06

    Topics