Laser & Optoelectronics Progress, Volume. 61, Issue 9, 0914011(2024)
Discrete Path Nd∶YAG Innoslab Laser Amplifier Operating at 2 kHz Repetition Rate
[1] Hwang D, Ryu S G, Misra N et al. Nanoscale laser processing and diagnostics[J]. Applied Physics A, 96, 289-306(2009).
[2] C̆erný P, Jelinkova H, Zverev P G et al. Solid state lasers with Raman frequency conversion[J]. Progress in Quantum Electronics, 28, 113-143(2004).
[3] Löhring J, Luttmann J, Kasemann R et al. INNOSLAB-based single-frequency MOPA for airborne lidar detection of CO2 and methane[J]. Proceedings of SPIE, 8959, 89590J(2014).
[4] Ostermeyer M, Kappe P, Menzel R et al. Diode-pumped Nd: YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system[J]. Applied Optics, 44, 582-590(2005).
[5] Ryabtsev G I, Bogdanovich M V, Grigor’ev A V et al. Powerful all-solid-state multiwave laser for aerosol lidars[J]. Journal of Optical Technology, 81, 571-574(2014).
[6] Russbueldt P, Hoffmann D, Höfer M et al. Innoslab amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 447-463(2015).
[7] Hodgson N, Weber H. Influence of spherical aberration of the active medium on the performance of Nd: YAG lasers[J]. IEEE Journal of Quantum Electronics, 29, 2497-2507(1993).
[8] Liu C, Riesbeck T, Wang X et al. Influence of spherical aberrations on the performance of dynamically stable resonators[J]. Optics Communications, 281, 5222-5228(2008).
[9] Guo J, Lin H, Li J F et al. High power TEM00 picosecond output based on a Nd:GdVO4 discrete path Innoslab amplifier[J]. Optics Letters, 41, 2875-2878(2016).
[10] Ma C, Liu Z, Liu K et al. High efficiency, 41.6 W, 10 kHz picosecond output based on a Nd: YAG double-pass multi-folded Innoslab amplifier[J]. Optics & Laser Technology, 148, 107767(2022).
[11] Ning J, Han K Z, He J L et al. 83.4 W, 17.69 kHz spectral bandwidth, continuous-wave, beam densely folded Innoslab amplifier[J]. Optics Letters, 42, 1109-1112(2017).
[12] Mao Y F, Zhang H L, Hao X L et al. 8.4 mJ, 10 kHz, 3.6 ns, Nd∶YVO4 slab amplifier[J]. Optics Express, 24, 11017-11022(2016).
[13] Löhring J, Strotkamp M, Elsen F et al. Demonstration of a 500 mJ InnoSlab-amplifier for future lidar applications[J]. Proceedings of SPIE, 9726, 97260M(2016).
[14] Javed F, Zhang H, Gao Q et al. A high average power, compact 100 kHz, 11.6-ns Nd∶YAG Innoslab amplifier[J]. Results in Physics, 16, 102926(2020).
[15] Gao Q, Javed F, Zhang H L. 212 W, Nd∶YAG Innoslab nanosecond laser amplifier[J]. Proceedings of SPIE, 11170, 111701V(2019).
[16] Avizonis P V, Grotbeck R L. Experimental and theoretical ruby laser amplifier dynamics[J]. Journal of Applied Physics, 37, 687-693(1966).
[17] Koechner W[M]. Solid-state laser engineering(2006).
[18] Sato Y, Taira T. Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials[J]. Optical Materials Express, 2, 1076-1087(2012).
[19] Sang S H, Zhang H L, Mao Y F et al. Compact, high-average-power, nanosecond multi-pass Nd∶YVO4 Innoslab amplifier[J]. Applied Physics B, 121, 131-134(2015).
[20] Furuse H, Chosrowjan H, Kawanaka J et al. ASE and parasitic lasing in thin disk laser with anti-ASE cap[J]. Optics Express, 21, 13118-13124(2013).
Get Citation
Copy Citation Text
Yilan Chen, Jiqiao Liu, Mingjian Wang, Xiao Chen, Xiaolei Zhu. Discrete Path Nd∶YAG Innoslab Laser Amplifier Operating at 2 kHz Repetition Rate[J]. Laser & Optoelectronics Progress, 2024, 61(9): 0914011
Category: Lasers and Laser Optics
Received: Jan. 4, 2023
Accepted: Mar. 19, 2023
Published Online: May. 6, 2024
The Author Email: Jiqiao Liu (x_qiao@siom.ac.cn)
CSTR:32186.14.LOP223183