Chinese Journal of Lasers, Volume. 42, Issue 9, 902002(2015)
Optimal Design of Single-Frequency Laser System for 795 nm Squeezed Light Source
[1] [1] T Eberle, S Steinlechner, J Bauchrowitz, et al.. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection[J]. Phys Rev Lett, 2010, 104(25): 251102.
[2] [2] F Wolfgramm, A Cerè, F A Beduini, et al.. Squeezed-light optical magnetometry[J]. Phys Rev Lett, 2010, 105(5): 053601.
[3] [3] Peng Kunchi. Generation and application of squeezed state light sub-shot-noise-limit optical measurenent and quantum information [J]. Physics, 2001, 30(5): 300-305.
[4] [4] W P Bowen, R Schnabel, P K Lam, et al.. Experimental investigation of criteria for continuous variable entanglement[J]. Phys Rev Lett, 2003, 90(4): 043601.
[5] [5] S Polzik, J Carri, H J Kimble. Spectroscopy with squeezed light[J]. Phys Rev Lett, 1992, 68(20): 3020-3023.
[6] [6] M D Levenson, R M Shelby, M Reid, et al.. Quantum nondemolition detection of optical quadrature amplitudes[J]. Phys Rev Lett, 1986, 57(20): 2473-2476.
[7] [7] Xiaojun Jia, Xiaolong Su, Kunchi Peng, et al.. Experimental demonstration of unconditional entanglement swapping for continuous Variables[J]. Phys Rev Lett, 2004, 93(25): 250503.
[8] [8] D Bouwmeester, J W Pan, K Mattle, et al.. Experimental quantum teleportation[J]. Nature, 1997, 390(11): 575-579.
[9] [9] A Barenco, A K Ekert. Dense coding based on quantum entanglement[J]. J Mod Opt, 1995, 42(6):1253-1259.
[10] [10] Su Xiaolong. Generation of Quadripartite Entangled Optical Field and Quantum Key Distribution with Continuous Variables[D]. Taiyuan: Shanxi University, 2007: 81-106.
[11] [11] Daisuke Akamatsu, Keiichirou Akiba, Mikio Kozuma. Electromagnetically induced transparency with squeezed vacuum[J]. Phys Rev Lett, 2004, 92(20): 203602.
[12] [12] Kazuhito Honda, Daisuke Akamatsu, Manabu Arikawa, et al.. Storage and retrieval of a squeezed vacuum[J]. Phys Rev Lett, 2008, 100(9): 093601.
[13] [13] A Dantan, M Pinard. Quantum-state transfer between fields and atoms in electromagnetically induced transparency[J]. Phys Rev A, 2004, 69(4): 043810.
[14] [14] A Pr edojevic′ , Z Zhai, J M Caballero, et al.. Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator [J]. Phys Rev A, 2008, 78(6): 063820.
[15] [15] G Hétet, O Glckl, K A Pilypas, et al.. Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line[J]. J Phys B: At Mol Opt Phys, 2007, 40(1): 221-226.
[16] [16] Takahito Tanimura, Daisuke Akamatsu, Yoshihiko Yokoi. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4[J]. Opt Lett, 2006, 31(15): 2344-2346.
[17] [17] Yang Wenhai, Wang Yajun, Li Zhixiu, et al.. Compact and low-noise intracavity frequency-doubled single-frequency Nd∶YAP/KTP laser[J]. Chinese J Lasers, 2014, 41(5): 0502002.
[18] [18] Coherent. MBR Ring Series[OL]. http://www.coherent.com/Products/index.cfm 846/MBR-Ring-Series. [2015-05-13]
[19] [19] Spectra Physics Matisse 2[OL]. http://www.spectra-physics.com/products/tunable-lasers/matisse/. [2015-05-13]
[20] [20] M Squared. Solstis CW Ti Sapphire Laser[OL]. http://www.m2lasers.com/products/laser-systems/ti-sapphire-laser.aspx. [2015-05-13]
[21] [21] Huadong Lu, Xuejun Sun, Meihong Wang, et al.. Single frequency Ti: sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss[J]. Opt Express, 2014, 22(20): 024554.
[23] [23] Lu Huadong. Intracavity losses measurement of the Ti: sapphire laser with relaxation resonant oscillation frequency and output power [J]. Chinese J Lasers, 2013, 40(4): 0402002.
[24] [24] Jacek K Tyminski. Photorefractive damage in KTP used as second-harmonic generator[J]. J Appl Phys, 1991, 70(10): 5570-5576.
[25] [25] Li Hong, Feng Jinxia, Wan Zhenju, et al.. Low noise continuous–wave single frequency 780 nm laser high-efficiently generated by extra-cavity-enhanced frequency doubling[J]. Chinese J Lasers, 2014, 41(5): 0502003.
[27] [27] Han Yashuai, Wen Xin, Bai Jiandong, et al.. Generation of 130 mW of 397.5 nm tunable laser via ring-cavity-enhanced frequency doubling[J]. JOSA B, 2014, 31(8): 1942-1947.
[29] [29] P K Lam, T C Ralph, B C Buchler, et al.. Optimization and transfer of vacuum squeezing from an optical parametric pscillator[J]. J Opt B: Quantum Semiclass Opt, 1999, 1(4): 469-474.
[30] [30] Wang Yajun, Yang Wenhai, Zheng Yaohui, et al.. Influence of pump wavelength and Nd3+ doped concentration on the performance of intracavity doubling single-frequency lasers[J]. Chinese J Lasers, 2013, 40(6): 0602005.
[31] [31] E D Black. An introduction to pound-drever-hall laser frequency stabilization[J]. Am J Phys, 2001, 69(1): 79-87.
Get Citation
Copy Citation Text
Li Zhixiu, Yang Wenhai, Wang Yajun, Zheng Yaohui. Optimal Design of Single-Frequency Laser System for 795 nm Squeezed Light Source[J]. Chinese Journal of Lasers, 2015, 42(9): 902002
Received: Jan. 26, 2015
Accepted: --
Published Online: Sep. 6, 2015
The Author Email: Zhixiu Li (lizhixiu1083@163.com)