Advanced Photonics, Volume. 5, Issue 3, 036007(2023)
Submilliwatt, widely tunable coherent microcomb generation with feedback-free operation
Fig. 1. Resonator characterization. (a) Top-view photograph of the AlGaAsOI microresonator. The radius of the microresonator is
Fig. 2. Dynamics of mode-locked microcombs. (a) Normalized transmitted total power (blue) and comb power (red). The laser is scanned from the blue side to the red side of the mode. Blue and red shadings indicate CW state and microcomb state, respectively. (b) Typical optical spectra of microcombs at different stages as indicated in (a). Red dashed lines denote the simulated spectral envelope. (c) Simulated intracavity waveforms corresponding to the spectra in (b). (d) Optical spectra of microcombs with spacing from 1 to 4 FSRs (top to bottom). Inset: intensity noise of the 1-FSR microcomb (resolution bandwidth: 100 kHz). The noise floor of the measurement system is also plotted for comparison.
Fig. 3. Power-efficient mode-locked Kerr comb generation. (a) Schematics of different microcomb generation schemes. (b) Comb spectrum at the flat step [shading area in upper panel (c)] under the on-chip pump power of
Fig. 4. Widely tunable frequency-chirped microcomb. (a) Both (i) bright soliton and (ii) dark pulse could act as a parallel frequency chirping source, in which the frequency modulation of the pump laser is transduced to each comb line. The stimulated Raman effects and higher-order dispersion would result in wavelength-dependent chirping copies, which could be mitigated in the efficient dark-pulse scheme with relatively low intracavity power. (b) Experimental setup of the parallel chirping source. WSS, wavelength-selective switch; WM, wavelength meter. (c) Measured time-frequency maps of the pump line (left panel) and the channel-10 sideband (right panel), with the pump laser chirping at 5 GHz (blue) and 10 GHz (red), respectively. (d) Frequency excursion of each channel at 10 GHz frequency chirping. (e) Experimental setup of the fast frequency modulation. An SSB modulator is employed as the chirping pump. The modulated comb lines are then charaterized by a heterodyne measurement. SSB, single-sideband modulator; OSC, oscilloscope. (f) Time-frequency maps of 5-GHz chirping pump and a comb line with modulation frequency of 400 kHz.
Fig. 5. Coherence of mode-locked frequency comb. (a) Experimental setup. PC, polarization controller; NF, notch filter; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; AOM, acousto-optic modulator; PD, photodetector; ESA, electric spectrum analyzer; OSC, oscilloscope. (b) Optical spectra of dark-pulse comb after NF. The range of telecommunication C-band is also indicated. (c) Left panel: measured RIN of comb teeth indicated in (b). Right panel: RIN at 10 MHz offset frequencies of all comb teeth within C-band. (d) Left panel: measured SSB frequency noise of comb teeth indicated in (b). Right panel: fundamental linewidth of all comb teeth within C-band.
Fig. 6. Long-term stability of the microcomb. The optical spectra of the microcomb are continuously recorded for over 7 h, and the total comb power (red) and power of the 10th comb line (blue) are plotted, showing 1.25 and 1 dB variations, respectively.
|
Get Citation
Copy Citation Text
Haowen Shu, Lin Chang, Chenghao Lao, Bitao Shen, Weiqiang Xie, Xuguang Zhang, Ming Jin, Yuansheng Tao, Ruixuan Chen, Zihan Tao, Huajin Chang, Shaohua Yu, Qifan Yang, Xingjun Wang, John E. Bowers, "Submilliwatt, widely tunable coherent microcomb generation with feedback-free operation," Adv. Photon. 5, 036007 (2023)
Category: Research Articles
Received: Apr. 2, 2023
Accepted: May. 8, 2023
Published Online: Jun. 14, 2023
The Author Email: Wang Xingjun (xjwang@pku.edu.cn), Bowers John E. (bowers@ece.ucsb.edu)