Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1215006(2025)

Industrial Image Anomaly Detection Using Bias-Reduced Coupled Hyperspheres

Shuai Zhang* and Meiju Liu
Author Affiliations
  • School of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning , China
  • show less
    Figures & Tables(9)
    Overall structure of proposed model
    Anomaly generation process
    Preview of the six generated anomaly images
    Structure of feature descriptor
    Visualization of results
    • Table 1. Anomaly detection results of different methods on the MVTec AD dataset

      View table

      Table 1. Anomaly detection results of different methods on the MVTec AD dataset

      MethodRIAD3ADTR6CutPaste7DRAEM8CS-Flow9PatchCore10CFA11Proposed
      TextureCarpet84.2/96.3100.0/98.793.9/98.397.0/95.5100.0/-98.7/99.097.3/-100.0/99.0
      Grid99.6/98.897.5/95.0100/97.599.9/99.799.0/-98.2/98.799.2/-98.7/98.6
      Leather100.0/99.4100.0/98.1100/99.5100.0/98.6100.0/-100.0/99.3100.0/-100.0/99.1
      Tile98.7/89.1100.0/93.894.6/90.599.6/99.2100.0/-98.7/95.699.4/-99.8/98.0
      Wood93.0/85.899.9/91.299.1/95.599.1/96.4100.0/-99.2/95.099.7/-100.0/94.9
      Average95.1/93.999.5/94.797.5/96.399.1/97.999.8/-99.0/97.599.1/97.299.7/97.9
      ObjectBottle99.9/98.4100.0/9898.2/97.699.2/99.199.8/-100.0/98.6100.0/-100.0/98.5
      Cable81.9/84.292.5/96.881.2/90.091.8/94.799.1/-99.5/98.499.8/-100.0/98.8
      Capsule88.4/92.893.1/99.198.2/97.498.5/94.397.1/-98.1/98.897.3/-97.7/98.8
      Hazelnut83.3/96.1100.0/98.698.3/97.3100.0/99.799.6/-100.0/98.7100.0/-100.0/98.6
      Metal nut88.5/92.594.9/9799.9/93.198.7/99.599.1/-100.0/98.4100.0/-100.0/98.4
      Pill83.8/95.792.1/98.394.9/95.798.9/97.698.6/-96.6/97.497.9/-98.6/98.8
      Screw84.5/98.894/99.388.7/96.793.9/97.697.6/-98.1/99.497.3/-98.2/99.4
      Toothbrush100.0/98.993.1/98.599.4/98.1100.0/98.191.9/-100.0/98.7100.0/-100.0/98.3
      Transistor90.9/87.797.6/97.996.1/93.093.1/90.999.3/-100.0/96.3100.0/-100.0/98.4
      Zipper98.1/97.895.8/97.299.9/99.3100.0/98.899.7/-99.4/98.899.6/-100.0/98.8
      Average89.9/94.395.3/98.195.5/95.897.4/97.098.2/-99.2/98.499.2/98.699.5/98.7
      Total average91.7/94.296.4/97.296.2/96.098.0/97.398.7/-99.1/98.199.2/98.299.5/98.4
    • Table 2. Ablation experimental results of model fine-tuning

      View table

      Table 2. Ablation experimental results of model fine-tuning

      BackboneModel fine-tuningValue /%
      CFAProposed
      ResNet1898.7/97.699.0/97.7
      99.1/97.899.4/98.0
      WideResNet5099.2/98.299.4/98.3
      99.4/98.399.5/98.4
    • Table 3. Ablation experimental results of anomaly generation strategy

      View table

      Table 3. Ablation experimental results of anomaly generation strategy

      Generation strategyAnomaly shapeAnomaly fillAUROC /%
      RectangleBézier shapePerlin noiseCutPaste7External dataset
      99.0/97.7
      CutPaste798.7/97.5
      DRAEM898.8/97.6
      99.1/97.7
      99.3/97.9
      Proposed99.4/98.0
    • Table 4. Ablation study results of other improvement methods

      View table

      Table 4. Ablation study results of other improvement methods

      BaselineBaseline+①Baseline+②Baseline+③
      Texture99.1/97.299.3/97.599.0/97.099.4/97.4
      Object99.2/98.699.3/98.699.4/98.799.3/98.7
      Total99.2/98.299.3/98.399.3/98.299.4/98.3
    Tools

    Get Citation

    Copy Citation Text

    Shuai Zhang, Meiju Liu. Industrial Image Anomaly Detection Using Bias-Reduced Coupled Hyperspheres[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1215006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Oct. 8, 2024

    Accepted: Jan. 2, 2025

    Published Online: Jun. 10, 2025

    The Author Email: Shuai Zhang (mrchang33@163.com)

    DOI:10.3788/LOP242084

    Topics