Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 9, 1228(2022)

Real-time detection model of highway vehicle based on YOLOv5s

Yuan-feng LIU1, Hai-jun JI2, and Li-bo LIU1、*
Author Affiliations
  • 1School of Information Engineering, Ningxia University, Yinchuan 750021, China
  • 2Ningxia Road Network Monitoring and Emergency Response Center, Yinchuan 750021, China
  • show less
    Figures & Tables(17)
    Model architecture of YOLOv5s
    Convolutional attention residual module.(a) ResBottleNeck; (b) CAM; (c) SAM.
    Intermediate process renderings
    Convolutional attention pyramid network.(a) Backbone; (b) Up-bottom path augmentation; (c) Bottom-up path augmentaion.
    Intermediate process heat map
    Loss decline curve
    Overall process flowchart
    Backbone network extraction feature results
    Feature fusion result
    Feature fusion results
    Renderings on Ningxia expressway vehicle test sets
    • Table 1. Datasets content description

      View table
      View in Article

      Table 1. Datasets content description

      种类描述数量
      Car私家轿车、4座及以内车型3 576
      Van小货车、商务车、8座及以内车型2 398
      Bus客车3 074
      Truck大型卡车、大型货车3 685
    • Table 2. Comparison of detection accuracy of different algorithms on Ningxia expressway vehicle datasets

      View table
      View in Article

      Table 2. Comparison of detection accuracy of different algorithms on Ningxia expressway vehicle datasets

      DetectorCarVanBusTruckmAP
      SSD0.8360.6350.7920.8650.782
      YOLOv30.9060.6580.8890.9270.845
      YOLOv40.9510.7140.9140.9640.886
      YOLOv5s0.9370.6810.9110.9550.871
      YOLOv5s-CRCP(ours)0.9860.7440.9230.9950.912
    • Table 3. Comparison of test results of different algorithms on Ningxia expressway vehicle datasets

      View table
      View in Article

      Table 3. Comparison of test results of different algorithms on Ningxia expressway vehicle datasets

      DetectorBase NetworkFPS
      SSDVGG1626
      YOLOv3DarkNet5336
      YOLOV4CSPDarkNet5338
      YOLOv5s——77
      YOLOv5s-CRCP(Ours)——75
    • Table 4. Ablation experiment of CR

      View table
      View in Article

      Table 4. Ablation experiment of CR

      Index实验1实验2实验3实验4
      mAP0.8710.8870.8760.893
      FPS77767776
    • Table 5. Ablation experiment of CP

      View table
      View in Article

      Table 5. Ablation experiment of CP

      Index实验1实验2实验3实验4
      mAP0.8710.8940.8870.901
      FPS77767675
    • Table 6. Final algorithm ablation experiment

      View table
      View in Article

      Table 6. Final algorithm ablation experiment

      Index实验1实验2实验3实验4
      mAP0.8710.8930.9010.912
      FPS77767575
    Tools

    Get Citation

    Copy Citation Text

    Yuan-feng LIU, Hai-jun JI, Li-bo LIU. Real-time detection model of highway vehicle based on YOLOv5s[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1228

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 24, 2022

    Accepted: --

    Published Online: Sep. 19, 2022

    The Author Email: Li-bo LIU (liulib@163.com)

    DOI:10.37188/CJLCD.2022-0026

    Topics