APPLIED LASER, Volume. 42, Issue 4, 72(2022)

High Cycle Fatigue Performance of Ti6Al4V Alloy Fabricated by Laser Powder Bed Fusion

Qi Shiwen1、*, Rong Peng1, Huang Dan1, Chen Yong1, Sun Jingjia2, and Xi Lixia2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(24)

    [1] [1] LIANG Z Y, ZHANG A F, LIANG S D, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology[J]. Applied Laser, 2017, 37(3): 452-458.

    [3] [3] WU Z K, WU S C, ZHANG J, et al. Defect induced fatigue behaviors of selective laser melted Ti6Al4V via synchrotron radiation X-ray tomography[J]. Acta Metallurgica Sinica, 2019, 55(7): 811-820.

    [4] [4] ZHANG S, GUI R Z, WEI Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.

    [5] [5] REN Y M, LIN X, HUANG W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3160-3168.

    [6] [6] RAFI H K, KARTHIK N V, GONG H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3872-3883.

    [7] [7] LIANG X K, DONG P, CHEN J L, et al. Microstructure and mechanical properties of selective laser melting Ti6Al4V alloy[J]. Applied Laser, 2014, 14(2): 101-104.

    [8] [8] LI H X, HUANG B Y, SUN F, et al. Microstructure and tensile properties of Ti6Al4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42(S2): 209-212.

    [9] [9] CHEN C P, LEI Y, CHEN B Q, et al. Numerical simulation of deformation of typical parts in selective laser melting additive manufacturing[J]. Applied Laser, 2021, 41(4): 814-821.

    [13] [13] MA T, LIU T T, LIAO W H, et al. Fatigue properties of Ti6Al4V produced by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(11): 1102012.

    [15] [15] GU D D, DAI D H, XIA M J, et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 645-652.

    [16] [16] FIELD A C, CARTER L N, ADKINS N J E, et al. The effect of powder characteristics on build quality of high-purity tungsten produced via laser powder bed fusion (LPBF)[J]. Metallurgical and Materials Transactions A, 2020, 51(3): 1367-1378.

    [17] [17] DONG D K, CHEN A, LI X F, et al. Effect of surface roughness on fatigue property of TC4 titanium alloy by selective laser melting[J]. Journal of Mechanical Strength, 2020, 42(5): 1094-1098.

    [18] [18] LEUDERS S, VOLLMER M, BRENNE F, et al. Fatigue strength prediction for titanium alloy Ti6Al4V manufactured by selective laser melting[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 3816-3823.

    [19] [19] HUANG Z Y, GUO Z J, WEN G P, et al. Mechanical properties of TC4 alloy annealed with different processes[J]. Heat Treatment of Metals, 2015, 40(9): 175-179.

    [20] [20] DONG Z J, HU M H, LUO Z Q. Microstructure and mechanical properties of laser welded Ti22Al27Nb/TC4 dissimilar alloys[J]. Aeronautical Manufacturing Technology, 2015, 58(3): 71-74.

    [21] [21] YANG J J, HAN J, YU H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti6Al4V alloy[J]. Materials & Design, 2016, 110: 558-570.

    [22] [22] KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of Ti6Al4V processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015, 220: 202-214.

    [23] [23] ZHONG Q P, ZHAO Z H. Fractography[M]. Beijing: Higher Education Press, 2006: 261-264.

    [24] [24] ZOU T C, CHEN M Y, ZHU H, et al. Research on high cycle fatigue performance of AlSi7Mg alloy fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231408.

    CLP Journals

    [1] Wang Yanwen. Experimental Study on the Friction and Wear Properties of Laser Textured 40Cr Steel under Oil Lubrication[J]. APPLIED LASER, 2023, 43(12): 98

    Tools

    Get Citation

    Copy Citation Text

    Qi Shiwen, Rong Peng, Huang Dan, Chen Yong, Sun Jingjia, Xi Lixia. High Cycle Fatigue Performance of Ti6Al4V Alloy Fabricated by Laser Powder Bed Fusion[J]. APPLIED LASER, 2022, 42(4): 72

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 22, 2021

    Accepted: --

    Published Online: Jan. 3, 2023

    The Author Email: Shiwen Qi (swqinuaa@163.com)

    DOI:10.14128/j.cnki.al.20224204.072

    Topics