APPLIED LASER, Volume. 42, Issue 4, 72(2022)
High Cycle Fatigue Performance of Ti6Al4V Alloy Fabricated by Laser Powder Bed Fusion
[1] [1] LIANG Z Y, ZHANG A F, LIANG S D, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology[J]. Applied Laser, 2017, 37(3): 452-458.
[3] [3] WU Z K, WU S C, ZHANG J, et al. Defect induced fatigue behaviors of selective laser melted Ti6Al4V via synchrotron radiation X-ray tomography[J]. Acta Metallurgica Sinica, 2019, 55(7): 811-820.
[4] [4] ZHANG S, GUI R Z, WEI Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.
[5] [5] REN Y M, LIN X, HUANG W D. Research progress of microstructure and fatigue behavior in additive manufacturing Ti6Al4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3160-3168.
[6] [6] RAFI H K, KARTHIK N V, GONG H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12): 3872-3883.
[7] [7] LIANG X K, DONG P, CHEN J L, et al. Microstructure and mechanical properties of selective laser melting Ti6Al4V alloy[J]. Applied Laser, 2014, 14(2): 101-104.
[8] [8] LI H X, HUANG B Y, SUN F, et al. Microstructure and tensile properties of Ti6Al4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42(S2): 209-212.
[9] [9] CHEN C P, LEI Y, CHEN B Q, et al. Numerical simulation of deformation of typical parts in selective laser melting additive manufacturing[J]. Applied Laser, 2021, 41(4): 814-821.
[13] [13] MA T, LIU T T, LIAO W H, et al. Fatigue properties of Ti6Al4V produced by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(11): 1102012.
[15] [15] GU D D, DAI D H, XIA M J, et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5): 645-652.
[16] [16] FIELD A C, CARTER L N, ADKINS N J E, et al. The effect of powder characteristics on build quality of high-purity tungsten produced via laser powder bed fusion (LPBF)[J]. Metallurgical and Materials Transactions A, 2020, 51(3): 1367-1378.
[17] [17] DONG D K, CHEN A, LI X F, et al. Effect of surface roughness on fatigue property of TC4 titanium alloy by selective laser melting[J]. Journal of Mechanical Strength, 2020, 42(5): 1094-1098.
[18] [18] LEUDERS S, VOLLMER M, BRENNE F, et al. Fatigue strength prediction for titanium alloy Ti6Al4V manufactured by selective laser melting[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 3816-3823.
[19] [19] HUANG Z Y, GUO Z J, WEN G P, et al. Mechanical properties of TC4 alloy annealed with different processes[J]. Heat Treatment of Metals, 2015, 40(9): 175-179.
[20] [20] DONG Z J, HU M H, LUO Z Q. Microstructure and mechanical properties of laser welded Ti22Al27Nb/TC4 dissimilar alloys[J]. Aeronautical Manufacturing Technology, 2015, 58(3): 71-74.
[21] [21] YANG J J, HAN J, YU H C, et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti6Al4V alloy[J]. Materials & Design, 2016, 110: 558-570.
[22] [22] KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of Ti6Al4V processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015, 220: 202-214.
[23] [23] ZHONG Q P, ZHAO Z H. Fractography[M]. Beijing: Higher Education Press, 2006: 261-264.
[24] [24] ZOU T C, CHEN M Y, ZHU H, et al. Research on high cycle fatigue performance of AlSi7Mg alloy fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231408.
Get Citation
Copy Citation Text
Qi Shiwen, Rong Peng, Huang Dan, Chen Yong, Sun Jingjia, Xi Lixia. High Cycle Fatigue Performance of Ti6Al4V Alloy Fabricated by Laser Powder Bed Fusion[J]. APPLIED LASER, 2022, 42(4): 72
Received: Dec. 22, 2021
Accepted: --
Published Online: Jan. 3, 2023
The Author Email: Shiwen Qi (swqinuaa@163.com)