Chinese Journal of Lasers, Volume. 44, Issue 3, 302009(2017)
Temperature Field of Molten Pool and Microstructure Property in Laser Melting Depositions of Ti6Al4V
[1] [1] Xue Lei, Chen Jing, Lin Xin, et al. Microstructure and mechanical properties of laser rapid repaired Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2007, 36(6): 989-993.
[3] [3] Chen Yiqiang, Liu Yantao, Tang Yangjie, et al. Microscopic structure and tensile property of laser melting deposited TA15/Ti2AlNb dual alloy[J]. Chinese J Lasers, 2016, 43(8): 0802010.
[5] [5] Huang Weidong. Laser solid forming[M]. Xi′an: Northwestern Polytechnical University Press, 2007: 2-4.
[6] [6] Qian L, Mei J, Liang J, et al. Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti-6Al-4V samples[J]. Materials Science & Technology, 2005, 21(5): 597-605.
[7] [7] Wang Xucheng, Shao min. The basic principle of the finite element method and numerical method[M]. Beijing: Tsinghua University Press, 1997: 5-8.
[8] [8] Qi H, Mazumder J, Ki H. Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition[J]. Journal of Applied Physics, 2006, 100(2): 024903.
[9] [9] Liu Z Y, Qi H. Numerical simulation of transport phenomena for a double-layer laser powder deposition of single-crystal superalloy[J]. Metallurgical and Materials Transactions A, 2014, 45(4): 1903-1915.
[10] [10] Liu Z Y, Qi H. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 2015, 216: 19-27.
[11] [11] Liu Z Y, Qi H. Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy[J]. Acta Materialia, 2015, 87: 248-258.
[12] [12] Manvatkar V, De A, Debroy T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. Journal of Applied Physics, 2014, 116(12): 124905.
[13] [13] Zhang Y J, Yu G, He X L, et al. Numerical and experimental investigation of multilayer SS410 thin wall built by laser direct metal deposition[J]. Journal of Materials Processing Technology, 2012, 212(1): 106-112.
[15] [15] Zhang Shuangyin, Lin Xin, Chen Jing, et al. Influence of process parameters on structure and forming quality of laser rapid forming TC4 titanium alloy after laser rapid forming processing[J]. Rare Metal Materials and Engineering, 2007, 36(10): 1839-1843.
[16] [16] Fu Yao. The numerical simulation of the temperature field and stress field of the laser powder deposition[D]. Beijing: Beijing Jiaotong University, 2007: 18-22.
[17] [17] Yang Jianguo. Finite element analysis foundation of welding structure and realization by MSC.Marc[M]. Beijing: Mechanical Industry Press, 2012: 18-20.
[18] [18] Hunt J D. Solidification and casting of metals[M]. London: The Metal Society Press, 1979: 18-30.
[19] [19] Zhang Min. Research on laser additive manufacturing characteristics of titanium alloy with powder and wire[D]. Harbin: Harbin Institute of Technology, 2013: 20-22.
Get Citation
Copy Citation Text
Li Liqun, Wang Jiandong, Wu Chaochao, Zhang Min, Zhao Weigang. Temperature Field of Molten Pool and Microstructure Property in Laser Melting Depositions of Ti6Al4V[J]. Chinese Journal of Lasers, 2017, 44(3): 302009
Category: laser manufacturing
Received: Oct. 27, 2016
Accepted: --
Published Online: Mar. 8, 2017
The Author Email: Liqun Li (liliqun@hit.edu.cn)