Laser Technology, Volume. 49, Issue 2, 159(2025)

Photon loss robustness of optical interferometer for quantum-enhanced phase precision measurements

LI Junhong, FENG Xianing, and WEI Lianfu*
Author Affiliations
  • Information Quantum Technology Laboratory, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
  • show less
    References(27)

    [3] [3] ISRAEL Y, ROSEN S, SILBERBERG Y. Supersensitive polarization microscopy using N00N states of light[J]. Physical Review Letters, 2014, 112(10): 103604.

    [4] [4] MOREAU P A, TONINELLI E, GREGORY T,et al. Imaging with quantum states of light[J]. Nature Reviews Physics, 2019, 1(6): 367-380.

    [5] [5] PIRANDOLA S, BARDHAN B R, GEHRING T,et al. Advances in photonic quantum sensing[J]. Nature Photonics, 2018, 12(12): 724-733.

    [6] [6] ABBOTT B P, ABBOTT R, ABBOTT T D,et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102.

    [7] [7] YAMAMOTO K, KOKEYAMA K, MICHIMURA Y,et al. Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors[J]. Classical and Quantum Gravity, 2019, 36(20): 205009.

    [8] [8] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review, 1981, D23(8): 1693-1708.

    [9] [9] ANISIMOV P M, RATERMAN G M, CHIRUVELLI A,et al. Quantum metrology with two-mode squeezed vacuum: Parity detection beats the Heisenberg limit[J]. Physical Review Letters, 2010, 104(10): 103602.

    [11] [11] SESHADREESAN K P, ANISIMOV P M, LEE H,et al. Parity detection achieves the Heisenberg limit in interferometry with coherent mixed with squeezed vacuum light[J]. New Journal of Physics, 2011, 13(8): 083026.

    [12] [12] DOWLING J P. Quantum optical metrology—the lowdown on high-N00N states[J]. Contemporary Physics, 2008, 49(2): 125-143.

    [13] [13] JOO J, MUNRO W J, SPILLER T P. Quantum metrology with entangled coherent states[J]. Physical Review Letters, 2011, 107(8): 083601.

    [14] [14] HOLLAND M J, BURNETT K. Interferometric detection of optical phase shifts at the Heisenberg limit[J]. Physical Review Letters, 1993, 71(9): 1355-1358.

    [15] [15] CAMPOS R A, GERRY C C, BENMOUSSA A. Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements[J]. Physical Review, 2003, A68(2): 023810.

    [16] [16] KIM T, SHIN J, HA Y,et al. The phase-sensitivity of a Mach-Zehnder interferometer for Fock state inputs[J]. Optics Communications, 1998, 156(1/3): 37-42.

    [18] [18] GERRY C C, MIMIH J. The parity operator in quantum optical metrology[J]. Contemporary Physics, 2010, 51(6): 497-511.

    [19] [19] SESHADREESAN K P, KIM S, DOWLING J P,et al. Phase estimation at the quantum Cramr-Rao bound via parity detection[J]. Physical Review, 2013, A87(4): 043833.

    [20] [20] BIRRITTELLA R J, ALSING P M, GERRY C C. The parity operator: Applications in quantum metrology[J]. AVS Quantum Science, 2021, 3(1): 014701.

    [22] [22] ESCHER B M, de MATOS FILHO R L, DAVIDOVICH L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology[J]. Nature Physics, 2011, 7(5): 406-411.

    [23] [23] DEMKOWICZ-DOBRZANSKI R, DORNER U, SMITH B J,et al. Quantum phase estimation with lossy interferometers[J]. Physical Review, 2009, A80(1): 013825.

    [24] [24] DATTA A, ZHANG L, THOMAS-PETER N,et al. Quantum metrology with imperfect states and detectors[J]. Physical Review, 2011, A83(6): 063836.

    [25] [25] ZHANG Y M, LI X W, YANG W,et al. Quantum Fisher information of entangled coherent states in the presence of photon loss[J]. Physical Review, 2013, A88(4): 043832.

    [26] [26] DORNER U, DEMKOWICZ-DOBRZANSKI R, SMITH B J,et al. Optimal quantum phase estimation[J]. Physical Review Letters, 2009, 102(4): 040403.

    [27] [27] FENG X N, LIU H Y, WEI L F. Waveguide Mach-Zehnder interferometer to enhance the sensitivity of quantum parameter estimation[J]. Optics Express, 2023, 31(11): 17215-17225.

    [28] [28] FENG X N, HE D, WEI L F. Robust phase metrology with hybrid quantum interferometers against particle losses[J]. Physical Review, 2023, A107(6): 062411.

    [29] [29] GARDINER C, ZOLLER P. Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics[M]. Berlin, Germany: Springer Science & Business Media, 2004.

    [30] [30] OH C, LEE S Y, NHA H,et al. Practical resources and measurements for lossy optical quantum metrology[J]. Physical Review, 2017, A96(6): 062304.

    [31] [31] PEZZ L, SMERZI A. Entanglement, nonlinear dynamics, and the Heisenberg limit[J]. Physical Review Letters, 2009, 102(10): 100401.

    [32] [32] LIU J, YUAN H, LU X M,et al. Quantum Fisher information matrix and multiparameter estimation[J]. Journal of Physics, 2020, A53(2): 023001.

    Tools

    Get Citation

    Copy Citation Text

    LI Junhong, FENG Xianing, WEI Lianfu. Photon loss robustness of optical interferometer for quantum-enhanced phase precision measurements[J]. Laser Technology, 2025, 49(2): 159

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 25, 2024

    Accepted: May. 13, 2025

    Published Online: May. 13, 2025

    The Author Email: WEI Lianfu (weilianfu@gmail.com)

    DOI:10.7510/jgjs.issn.1001-3806.2025.02.001

    Topics