International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 42001(2025)

Soft sensory-neuromorphic system for closed-loop neuroprostheses

Kim Jaehyon, Lee Sungjun, Yoon Jiyong, and Son Donghee
References(312)

[1] [1] Finch J. 2011. The ancient origins of prosthetic medicine.Lancet377, 548–549.

[2] [2] Lai J H and Hodges J S. 1999. Effects of processing parameters on physical properties of the silicone maxillofacial prosthetic materials.Dent. Mater.15, 450–455.

[3] [3] Cimolato A, Driessen J J M, Mattos L S, De Momi E, Laffranchi M and De Michieli L. 2022. EMG-driven control in lower limb prostheses: a topic-based systematic review.J. Neuroeng. Rehabil.19, 43.

[4] [4] Rodrguez-Tapia B, Soto I, Martnez D M and Arballo N C. 2020. Myoelectric interfaces and related applications: current state of EMG signal processing–a systematic review.IEEE Access8, 7792–7805.

[5] [5] Ahkami B, Ahmed K, Thesleff A, Hargrove L and Ortiz-Catalan M. 2023. Electromyography-based control of lower limb prostheses: a systematic review.IEEE Trans. Med. Robot. Bionics5, 547–562.

[6] [6] Lee S et al. 2020. Wireless epidermal electromyogram sensing system.Electronics9, 269.

[7] [7] Xiong D Z, Zhang D H, Zhao X G and Zhao Y W. 2021. Deep learning for EMG-based human-machine interaction: a review.IEEE/CAA J. Autom. Sin.8, 512–533.

[8] [8] Ko H, Kim S, Lee E and Kim E. 2024. Leveraging artificial intelligence in the bioengineering of prosthetics: enhancing athletic performance and accessibility for disabled athletes through adaptive, smart prosthetic technologies.J. Artif. Intell. Res.4, 1–30. https://thesciencebrigade.com/JAIR/article/view/308.

[9] [9] Mastinu E, Doguet P, Botquin Y, Hkansson B and Ortiz-Catalan M. 2017. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an osseointegrated implant.IEEE Trans. Biomed. Circuits Syst.11, 867–877.

[10] [10] Son D et al. 2018. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network.Nat. Nanotechnol.13, 1057–1065.

[11] [11] Song J K et al. 2017. Wearable force touch sensor array using a flexible and transparent electrode.Adv. Funct. Mater.27, 1605286.

[12] [12] Kim S, Jang J, Kang K, Jin S B, Choi H, Son D and Shin M. 2023. Injection-on-skin granular adhesive for interactive human–machine interface.Adv. Mater.35, 2307070.

[13] [13] Thomas T and Kurian A N. 2022. Robotic technology in the development of prosthesis.In Machine Learning for Critical Internet of Medical Things: Applications and Use Caseseds Al-Turjman F and Nayyar A (Springer, Cham) pp 153–175.

[14] [14] Babu D, Nasir A, Ravindran, Farag M and Jabbar W A. 2023. 3D printed prosthetic robot arm with grasping detection system for children.Int. J. Adv. Sci. Eng. Inf. Technol.13, 226–234.

[15] [15] Bajaj N M, Spiers A J and Dollar A M. 2019. State of the art in artificial wrists: a review of prosthetic and robotic wrist design.IEEE Trans. Robot.35, 261–277.

[16] [16] Lee W W, Tan Y J, Yao H C, Li S, See H H, Hon M, Ng K A, Xiong B, Ho J S and Tee B C K. 2019. A neuro-inspired artificial peripheral nervous system for scalable electronic skins.Sci. Robot.4, eaax2198.

[17] [17] Du J, Vann W, Zhou T Y, Ye Y and Zhu Q. 2024. Sensory manipulation as a countermeasure to robot teleoperation delays: system and evidence.Sci. Rep.14, 4333.

[18] [18] Kim D H et al. 2011. Epidermal electronics.Science333, 838–843.

[19] [19] Kim Y G, Song J H, Hong S and Ahn S H. 2022. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting.npj Flex. Electron.6, 52.

[20] [20] Yang Y R et al. 2020. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat.Nat. Biotechnol.38, 217–224.

[21] [21] Wen F, Zhang Z X, He T Y Y and Lee C. 2021. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove.Nat. Commun.12, 5378.

[22] [22] Zhou Z H et al. 2020. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays.Nat. Electron.3, 571–578.

[23] [23] Loke G et al. 2021. Digital electronics in fibres enable fabric-based machine-learning inference.Nat. Commun.12, 3317.

[24] [24] Sipola T, Alatalo J, Kokkonen T and Rantonen M. 2022. Artificial intelligence in the IoT era: a review of edge AI hardware and software.In 2022 31st Conference of Open Innovations Association (FRUCT). (IEEE, Helsinki, Finland) pp 320–331.

[25] [25] Wei Y, Zhou J, Wang Y, Liu Y G, Liu Q S, Luo J S, Wang C, Ren F B and Huang L. 2020. A review of algorithm & hardware design for AI-based biomedical applications.IEEE Trans. Biomed. Circuits Syst.14, 145–163.

[26] [26] Manickam P, Mariappan S A, Murugesan S M, Hansda S, Kaushik A, Shinde R and Thipperudraswamy S P. 2022. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare.Biosensors12, 562.

[27] [27] Du Nguyen H A, Yu J T, Xie L, Taouil M, Hamdioui S and Fey D. 2017. Memristive devices for computing: beyond CMOS and beyond von Neumann.In 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). (IEEE, Abu Dhabi, United Arab Emirates) pp 1–10.

[28] [28] Sebastian A, Le Gallo M, Khaddam-Aljameh R and Eleftheriou E. 2020. Memory devices and applications for in-memory computing.Nat. Nanotechnol.15, 529–544.

[29] [29] Chen W-H et al. 2019. CMOS-integrated memristive nonvolatile computing-in-memory for AI edge processors.Nat. Electron.2, 420–428.

[30] [30] Xue C X et al. 2021. A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices.Nat. Electron.4, 81–90.

[31] [31] Roy K, Jaiswal A and Panda P. 2019. Towards spike-based machine intelligence with neuromorphic computing.Nature575, 607–617.

[32] [32] Shastri B J, Tait A N, Ferreira de Lima T, Pernice W H P, Bhaskaran H, Wright C D and Prucnal P R. 2021. Photonics for artificial intelligence and neuromorphic computing.Nat. Photon.15, 102–114.

[33] [33] Markovi D, Mizrahi A, Querlioz D and Grollier J. 2020. Physics for neuromorphic computing.Nat. Rev. Phys.2, 499–510.

[34] [34] Rao A, Plank P, Wild A and Maass W. 2022. A long short-term memory for AI applications in spike-based neuromorphic hardware.Nat. Mach. Intell.4, 467–479.

[35] [35] Donati E and Indiveri G. 2023. Neuromorphic bioelectronic medicine for nervous system interfaces: from neural computational primitives to medical applications.Prog. Biomed. Eng.5, 013002.

[36] [36] Rajendran B, Sebastian A, Schmuker M, Srinivasa N and Eleftheriou E. 2019. Low-power neuromorphic hardware for signal processing applications: a review of architectural and system-level design approaches.IEEE Signal Process. Mag.36, 97–110.

[37] [37] Kim J, Im J, Shin W, Lee S, Oh S, Kwon D, Jung G, Choi W Y and Lee J H. 2024. Demonstration of in-memory biosignal analysis: novel high-density and low-power 3d flash memory array for arrhythmia detection.Adv. Sci.11, 2308460.

[38] [38] Zeng M Y, He Y L, Zhang C X and Wan Q. 2021. Neuromorphic devices for bionic sensing and perception.Front. Neurosci.15, 690950.

[39] [39] Kennedy M B. 2016. Synaptic signaling in learning and memory.Cold Spring Harb. Perspect. Biol.8, a016824.

[40] [40] Kotaleski J H and Blackwell K T. 2010. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches.Nat. Rev. Neurosci.11, 239–251.

[41] [41] Deckers L, Van Damme L, Van Leekwijck W, Tsang I J and Latr S. 2024. Co-learning synaptic delays, weights and adaptation in spiking neural networks.Front. Neurosci.18, 1360300.

[42] [42] Magee J C and Grienberger C. 2020. Synaptic plasticity forms and functions.Annu. Rev. Neurosci.43, 95–117.

[43] [43] Morrison A, Diesmann M and Gerstner W. 2008. Phenomenological models of synaptic plasticity based on spike timing.Biol. Cybern.98, 459–478.

[44] [44] Wan Q Z, Sharbati M T, Erickson J R, Du Y H and Xiong F. 2019. Emerging artificial synaptic devices for neuromorphic computing.Adv. Mater. Technol.4, 1900037.

[45] [45] Zhu J D, Zhang T, Yang Y C and Huang R. 2020. A comprehensive review on emerging artificial neuromorphic devices.Appl. Phys. Rev.7, 0113121

[46] [46] Lu Q F, Sun F Q, Liu L, Li L H, Wang Y Y, Hao M M, Wang Z H, Wang S Q and Zhang T. 2020. Biological receptor-inspired flexible artificial synapse based on ionic dynamics.Microsyst. Nanoeng.6, 84.

[47] [47] Han H, Yu H Y, Wei H H, Gong J D and Xu W T. 2019. Recent progress in three-terminal artificial synapses: from device to system.Small15, 1900695.

[48] [48] Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L and Huang J. 2019. Recent advances in transistor-based artificial synapses.Adv. Funct. Mater.29, 1903700.

[49] [49] Huh W, Lee D and Lee C H. 2020. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics.Adv. Mater.32, 2002092.

[50] [50] Wang X M, Yang H H, Li E L, Cao C B, Zheng W, Chen H P and Li W W. 2023. Stretchable transistor-structured artificial synapses for neuromorphic electronics.Small19, 2205395.

[51] [51] Choi S, Yang J and Wang G. 2020. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing.Adv. Mater.32, 2004659.

[52] [52] Sun F Q, Lu Q F, Feng S M and Zhang T. 2021. Flexible artificial sensory systems based on neuromorphic devices.ACS Nano15, 3875–3899.

[53] [53] Wang W S and Zhu L Q. 2023. Recent advances in neuromorphic transistors for artificial perception applications.Sci. Technol. Adv. Mater.24, 2152290.

[54] [54] Ji X L, Zhao X Y, Tan M C and Zhao R. 2020. Artificial perception built on memristive system: visual, auditory, and tactile sensations.Adv. Intell. Syst.2, 1900118.

[55] [55] Sarkar T, Lieberth K, Pavlou A, Frank T, Mailaender V, Mcculloch I, Blom P W M, Torricelli F and Gkoupidenis P. 2022. An organic artificial spiking neuron forin situneuromorphic sensing and biointerfacing.Nat. Electron.5, 774– 783.

[56] [56] Donati E and Valle G. 2024. Neuromorphic hardware for somatosensory neuroprostheses.Nat. Commun.15, 556.

[57] [57] Lee Y, Oh J Y and Lee T W. 2022. Neuromorphic skin based on emerging artificial synapses.Adv. Mater. Technol.7, 2200193.

[58] [58] Wan C J, Cai P Q, Wang M, Qian Y, Huang W and Chen X D. 2020. Artificial sensory memory.Adv. Mater.32, 1902434.

[59] [59] Chen S et al. 2024. Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot.Nat. Commun.15, 7056.

[60] [60] Liu W J, Du Z J, Duan Z Y, Li L and Shen G Z. 2024. Neuroprosthetic contact lens enabled sensorimotor system for point-of-care monitoring and feedback of intraocular pressure.Nat. Commun.15, 5635.

[61] [61] Dalesio N M, Barreto Ortiz S F, Pluznick J L and Berkowitz D E. 2018. Olfactory, taste, and photo sensory receptors in non-sensory organs: it just makes sense.Front. Physiol.9, 1673.

[62] [62] Svechtarova M I, Buzzacchera I, Toebes B J, Lauko J, Anton N and Wilson C J. 2016. Sensor devices inspired by the five senses: a review.Electroanalysis28, 1201–1241.

[63] [63] Choi H, Kim Y, Kim S, Jung H, Lee S, Kim K, Han H S, Kim J Y, Shin M and Son D. 2023. Adhesive bioelectronics for sutureless epicardial interfacing.Nat. Electron.6, 779–789.

[64] [64] Jin S B, Choi H, Seong D, You C L, Kang J S, Rho S, Lee W B, Son D and Shin M. 2023. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation.Nature623, 58–65.

[65] [65] Lee S et al. 2024. A shape-morphing cortex-adhesive sensor for closed-loop transcranial ultrasound neurostimulation.Nat. Electron.7, 800–814.

[66] [66] Shin J H, Kwon J, Kim J U, Ryu H, Ok J, Joon Kwon S, Park H and Kim T I. 2022. Wearable EEG electronics for a brain– AI closed-loop system to enhance autonomous machine decision-making.npj Flex. Electron.6, 32.

[67] [67] Giordano G F, Ferreira L F, Bezerra R S, Barbosa J A, Costa J N Y, Pimentel G J C and Lima R S. 2023. Machine learning toward high-performance electrochemical sensors.Anal. Bioanal. Chem.415, 3683–3692.

[68] [68] Moin A et al. 2021. A wearable biosensing system with insensor adaptive machine learning for hand gesture recognition.Nat. Electron.4, 54–63.

[69] [69] Wang M et al. 2020. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors.Nat. Electron.3, 563–570.

[70] [70] Han S, Kim T, Kim D, Park Y L and Jo S. 2018. Use of deep learning for characterization of microfluidic soft sensors.IEEE Robot. Autom. Lett.3, 873–880.

[71] [71] Choi C et al. 2017. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array.Nat. Commun.8, 1664.

[72] [72] Kim J et al. 2014. Stretchable silicon nanoribbon electronics for skin prosthesis.Nat. Commun.5, 5747.

[73] [73] Song J-K et al. 2022. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays.Nat. Nanotechnol.17, 849–856.

[74] [74] Lee J et al. 2024. Intelligent upper-limb exoskeleton integrated with soft bioelectronics and deep learning for intention-driven augmentation.npj Flex. Electron.8, 11.

[75] [75] Luo Y F et al. 2023. Technology roadmap for flexible sensors.ACS Nano17, 5211–5295.

[76] [76] Byun S H et al. 2019. Mechanically transformative electronics, sensors, and implantable devices.Sci. Adv.5, eaay0418.

[77] [77] Xu C H, Yang Y R and Gao W. 2020. Skin-interfaced sensors in digital medicine: from materials to applications.Matter2, 1414–1445.

[78] [78] Trung T Q and Lee N E. 2016. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare.Adv. Mater.28, 4338–4372.

[79] [79] Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R and Rogers J A. 2019. Bio-integrated wearable systems: a comprehensive review.Chem. Rev.119, 5461–5533.

[80] [80] Lin M Y, Hu H J, Zhou S and Xu S. 2022. Soft wearable devices for deep-tissue sensing.Nat. Rev. Mater.7, 850–869.

[81] [81] Jang K I et al. 2014. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring.Nat. Commun.5, 4779.

[82] [82] Liu H Z, Li H G, Wang Z C, Wei X, Zhu H J, Sun M Z, Lin Y and Xu L Z. 2022. Robust and multifunctional kirigami electronics with a tough and permeable aramid nanofiber framework.Adv. Mater.34, 2207350.

[83] [83] Kim J, Kim Y, Lee J, Shin M and Son D. 2023. Wearable liquid metal composite with skin-adhesive chitosan–alginate–chitosan hydrogel for stable electromyogram signal monitoring.Polymers15, 3692.

[84] [84] Ho D H, Sun Q J, Kim S Y, Han J T, Kim D H and Cho J H. 2016. Stretchable and multimodal all graphene electronic skin.Adv. Mater.28, 2601–2608.

[85] [85] Ho D H, Choi Y Y, Jo S B, Myoung J M and Cho J H. 2021. Sensing with MXenes: progress and prospects.Adv. Mater.33, 2005846.

[86] [86] Lee H, Jang J, Lee J, Shin M, Lee J and Son D. 2023. Stretchable gold nanomembrane electrode with ionic hydrogel skin-adhesive properties.Polymers15, 3852.

[87] [87] Gao W et al. 2016. Fully integrated wearable sensor arrays for multiplexedin situperspiration analysis.Nature529, 509–514.

[88] [88] Zeng Z K, Huang Z, Leng K M, Han W X, Niu H, Yu Y, Ling Q, Liu J H, Wu Z G and Zang J F. 2020. Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and machine-learning algorithms.ACS Sens.5, 1305–1313.

[89] [89] Sun T M et al. 2024. Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses.Nano-Micro Lett.16, 14.

[90] [90] Laib A, Terriche Y, Melit M, Su C L, Mutarraf M U, Bouchekara H R E H, Guerrero J M and Boudjefdjouf H. 2024. Enhanced artificial intelligence technique for soft fault localization and identification in complex aircraft microgrids.Eng. Appl. Artif. Intell.127, 107289.

[91] [91] Yu C S, Yoo T, Kim H, Kim T T H, Chuan K C T and Kim B. 2021. A logic-compatible eDRAM compute-in-memory with embedded ADCs for processing neural networks.IEEE Trans. Circuits Syst.I68, 667–679.

[92] [92] Xie S S, Ni C, Sayal A, Jain P, Hamzaoglu F and Kulkarni J P. 2021. 16.2 eDRAM-CIM: compute-in-memory design with reconfigurable embedded-dynamic-memory array realizing adaptive data converters and charge-domain computing.In 2021 IEEE International Solid-State Circuits Conference. (IEEE, San Francisco, CA, USA) pp 248–250.

[93] [93] Zhang X Y and Basu A. 2023. A 915-1220 TOPS/W, 976-1301 GOPS hybrid in-memory computing based always-on image processing for neuromorphic vision sensors.IEEE J. Solid-State Circuits58, 589–599.

[94] [94] Kim S, Kim S, Hong S, Kim S, Han D, Choi J and Yoo H J. 2024. C-DNN: an energy-efficient complementary deep-neural-network processor with heterogeneous CNN/SNN core architecture.IEEE J. Solid-State Circuits59, 157–172.

[95] [95] Chen T R, Wang W J, Chen J Q, Fu H T, Yi W T, Cheng B J, Zhang H and Pan B. 2024. PipeCIM: a high-throughput computing-in-memory microprocessor with nested pipeline and RISC-V extended instructions.IEEE Trans. Circuits Syst.I71, 3214–3227.

[96] [96] Yin G D et al. 2024. Cramming more weight data onto compute-in-memory macros for high task-level energy efficiency using custom ROM with 3984-kb/mm2 density in 65-nm CMOS.IEEE J. Solid-State Circuits59, 1912–1925.

[97] [97] Um S, Kim S, Hong S, Kim S and Yoo H J. 2024. LOG-CIM: an energy-efficient logarithmic quantization computing-in-memory processor with exponential parallel data mapping and zero-aware 6T Dual-WL cell.IEEE J. Solid-State Circuits59, 3330–3341.

[98] [98] Qi X A, Li X T, Lou Y Q, Li Y F, Wang G X, Tang K T and Zhao J. 2024. A 0.67-to-5.4 TSOPs/W spiking neural network accelerator with 128/256 reconfigurable neurons and asynchronous fully connected synapses.IEEE J. Solid-State Circuits59, 3366–3377.

[99] [99] Ju Y H, Wei Y J. and Gu J. 2024. A 65 nm general-purpose compute-in-memory processor supporting both general programming and deep learning tasks.In IEEE J. Solid-State Circuits. pp 1–12.

[100] [100] Merolla P A et al. 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface.Science345, 668–673.

[101] [101] Davies M et al. 2018. Loihi: a neuromorphic manycore processor with on-chip learning.IEEE Micro.38, 82–99.

[102] [102] Bankman D, Yang L T, Moons B, Verhelst M and Murmann B. 2019. An always-on 3.8 μJ/86% CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm CMOS.IEEE J. Solid-State Circuits54, 158–172.

[103] [103] Yin S H, Jiang Z W, Seo J S and Seok M. 2020. XNOR-SRAM: in-memory computing SRAM macro for binary/ternary deep neural networks.IEEE J. Solid-State Circuits55, 1733–1743.

[104] [104] Pu J R, Goh W L, Nambiar V P, Wong M M and Do A T. 2021. A 5.28-mm2 4.5-pJ/SOP energy-efficient spiking neural network hardware with reconfigurable high processing speed neuron core and congestion-aware router.IEEE Trans. Circuits Syst.I68, 5081–5094.

[105] [105] Cao N Y, Chatterjee B, Liu J B, Cheng B Y, Gong M X, Chang M Y, Sen S and Raychowdhury A. 2022. A 65 nm wireless image SoC supporting on-chip DNN optimization and real-time computation-communication tradeoff via actor-critical neuro-controller.IEEE J. Solid-State Circuits57, 2545–2559.

[106] [106] Houshmand P et al. 2023. DIANA: an end-to-end hybrid DIgital and ANAlog neural network SoC for the edge.IEEE J. Solid-State Circuits58, 203–215.

[107] [107] Sehgal R, Thareja T, Xie S S, Ni C and Kulkarni J P. 2023. A bit-serial, compute-in-SRAM design featuring hybrid-integrating ADCs and input dependent binary scaled precharge eliminating DACs for energy-efficient DNN inference.IEEE J. Solid-State Circuits58, 2109–2124.

[108] [108] Wang H C, Liu R Z, Dorrance R, Dasalukunte D, Lake D and Carlton B. 2023. A charge domain SRAM compute-in-memory macro with C-2C ladder-based 8-bit MAC unit in 22-nm FinFET process for edge inference.IEEE J. Solid-State Circuits58, 1037–1050.

[109] [109] Liu Y, Ma Y F, Shan N H, Zhao T H, Chen P Y and Wu M. 2024. 30.2 A 22nm 0.26nW/synapse spike-driven spiking neural network processing unit using time-step-first dataflow and sparsity-adaptive in-memory computing.In 2024 IEEE International Solid-State Circuits Conference. (IEEE, San Francisco, CA, USA) pp 484–486.

[110] [110] Zhang J L, Huo D X, Zhang J, Qian C Q, Liu Q, Pan L Y, Wang Z H, Qiao N, Tang K T and Chen H. 2024. ANPI: a 28-nm 1.5-pJ/SOP asynchronous spiking neural network processor enabling sub-0.1-μJ/sample on-chip learning for edge-AI applications.IEEE J. Solid-State Circuits59, 2717–2729.

[111] [111] Zhao C Y et al. 2024. A 28-nm 36 Kb SRAM CIM engine with 0.173 μm2 4T1T cell and self-load-0 weight update for AI inference and training applications.IEEE J. Solid-State Circuits59, 3277–3289.

[112] [112] Zhong Y, Kuang Y S, Liu K F, Wang Z L, Feng S and Chen G. 2024. PAICORE: a 1.9-million-neuron 5.181-TSOPS/W digital neuromorphic processor with unified SNN-ANN and on-chip learning paradigm.In IEEE J. Solid-State Circuitspp 1–21.

[113] [113] Kim D, She X Y, Rahman N M, Chekuri V C K and Mukhopadhyay S. 2020. Processing-in-memory-based on-chip learning with spike-time-dependent plasticity in 65-nm CMOS.IEEE Solid-State Circuits Lett.3, 278–281.

[114] [114] Chen C Y, Dai Y S and Hong H C. 2024. A neuromorphic spiking neural network using time-to-first-spike coding scheme and analog computing in low-leakage 8T SRAM.IEEE Trans. Very Large Scale Integr.32, 848–859.

[115] [115] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H. 2020. Fully hardware-implemented memristor convolutional neural network.Nature577, 641–646.

[116] [116] Wan W E et al. 2022. A compute-in-memory chip based on resistive random-access memory.Nature608, 504–512.

[117] [117] Oh S, Shi Y H, Del Valle J, Salev P, Lu Y C, Huang Z S, Kalcheim Y, Schuller I K and Kuzum D. 2021. Energy-efficient Mott activation neuron for full-hardware implementation of neural networks.Nat. Nanotechnol.16, 680–687.

[118] [118] Hung J M et al. 2021. A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices.Nat. Electron.4, 921–930.

[119] [119] Jung S et al. 2022. A crossbar array of magnetoresistive memory devices for in-memory computing.Nature601, 211–216.

[120] [120] Um M, Kang M, Kwak H, Noh K, Kim S and Lee H M. 2023. An ECRAM-based analog compute-in-memory neuromorphic system with high-precision current readout.In 2023 IEEE Biomedical Circuits and Systems Conference. (IEEE, Toronto, ON, Canada) pp 1–5.

[121] [121] Ezzadeen M et al. 2024. Implementation of binarized neural networks immune to device variation and voltage drop employing resistive random access memory bridges and capacitive neurons.Commun. Eng.3, 80.

[122] [122] Deaville P, Zhang B N and Verma N. 2024. A fully row/column-parallel in-memory computing macro in foundry MRAM with differential readout for noise rejection.IEEE J. Solid-State Circuits59, 2070–2080.

[123] [123] Yan B N et al. 2019. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurablein situnonlinear activation.In 2019 Symposium on VLSI Technology. (IEEE, Kyoto, Japan) pp T86–T87.

[124] [124] Li W T, Sun X Y, Huang S S, Jiang H W and Yu S M. 2022. A 40-nm MLC-RRAM compute-in-memory macro with sparsity control, on-chip write-verify, and temperature-independent ADC references.IEEE J. Solid-State Circuits57, 2868–2877.

[125] [125] Li Y et al. 2023. An ADC-less RRAM-based computing-in-memory macro with binary CNN for efficient edge AI.IEEE Trans. Circuits Syst.II70, 1871–1875.

[126] [126] Rao M Y et al. 2023. Thousands of conductance levels in memristors integrated on CMOS.Nature615, 823–829.

[127] [127] Zhang W B et al. 2023. Edge learning using a fully integrated neuro-inspired memristor chip.Science381, 1205–1211.

[128] [128] Jiang H et al. 2023. Multicore spiking neuromorphic chip in 180-nm with ReRAM synapses and digital neurons.IEEE J. Emerg. Sel. Top Circuits Syst.13, 975–985.

[129] [129] Song W H et al. 2024. Programming memristor arrays with arbitrarily high precision for analog computing.Science383, 903–910.

[130] [130] Hsu H H et al. 2024. A nonvolatile AI-edge processor with SLC–MLC hybrid ReRAM compute-in-memory macro using current–voltage-hybrid readout scheme.IEEE J. Solid-State Circuits59, 116–127.

[131] [131] Wen T H et al. 2024. 34.8 A 22nm 16Mb floating-point ReRAM compute-in-memory macro with 31.2TFLOPS/W for AI edge devices.In 2024 IEEE International Solid-State Circuits Conference. (IEEE, San Francisco, CA, USA) pp 580–582.

[132] [132] Wen T H et al. 2024. Fusion of memristor and digital compute-in-memory processing for energy-efficient edge computing.Science384, 325–332.

[133] [133] Kang M J, Baeg K J, Khim D, Noh Y Y and Kim D Y. 2013. Printed, flexible, organic nano-floating-gate memory: effects of metal nanoparticles and blocking dielectrics on memory characteristics.Adv. Funct. Mater.23, 3503–3512.

[134] [134] Qu T-Y et al. 2020. A flexible carbon nanotube sen-memory device.Adv. Mater.32, 1907288.

[135] [135] Ren Y, Yang J Q, Zhou L, Mao J Y, Zhang S R, Zhou Y and Han S T. 2018. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites.Adv. Funct. Mater.28, 1805599.

[136] [136] Kim S, Choi B, Lim M, Yoon J, Lee J, Kim H D and Choi S J. 2017. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol.ACS Nano11, 2814–2822.

[137] [137] Nam T U, Vo N T P, Jeong M W, Jung K H, Lee S H, Lee T I and Oh J Y. 2024. Intrinsically stretchable floating gate memory transistors for data storage of electronic skin devices.ACS Nano18, 14558–14568.

[138] [138] Li M Z, Guo L C, Ding G L, Zhou K, Xiong Z Y, Han S T and Zhou Y. 2021. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing.ACS Appl. Mater. Interfaces13, 30861–30873.

[139] [139] Xiong X, Wang X, Hu Q L, Li X F and Wu Y Q. 2022. Flexible synaptic floating gate devices with dual electrical modulation based on ambipolar black phosphorus.iScience25, 103947.

[140] [140] Li Q X et al. 2024. High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics.Nat. Commun.15, 2686.

[141] [141] Zhong G K et al. 2020. Flexible electronic synapse enabled by ferroelectric field effect transistor for robust neuromorphic computing.Appl. Phys. Lett.117, 092903.

[142] [142] Jang S, Jang S, Lee E H, Kang M J, Wang G and Kim T W. 2019. Ultrathin conformable organic artificial synapse for wearable intelligent device applications.ACS Appl. Mater. Interfaces11, 1071–1080.

[143] [143] Ren C L et al. 2020. Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption.Adv. Funct. Mater.30, 1906131.

[144] [144] Xiong L Q, Chen Y, Yu J, Xiong W M, Zhang X Y and Zheng Y. 2019. Stretchable ferroelectric field-effect-transistor with multi-level storage capacity and photo-modulated resistance.Appl. Phys. Lett.115, 153107.

[145] [145] Joh H, Jung M, Hwang J, Goh Y, Jung T and Jeon S. 2022. Flexible ferroelectric hafnia-based synaptic transistor by focused-microwave annealing.ACS Appl. Mater. Interfaces14, 1326–1333.

[146] [146] Yoon J, Kim J, Jung H, Cho J I, Park J H, Shin M, Kim I S, Kang J and Son D. 2024. Intrinsically stretchable sensory-neuromorphic system for sign language translation.Curr. Opin. Solid State Mater. Sci.29, 101142.

[147] [147] Liu Y H, Zhu L Q, Feng P, Shi Y and Wan Q. 2015. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes.Adv. Mater.27, 5599–5604.

[148] [148] Van De Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Alec Talin A and Salleo A. 2017. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing.Nat. Mater.16, 414–418.

[149] [149] Nguyen T D, Trung T Q, Lee Y and Lee N E. 2022. Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties.Adv. Eng. Mater.24, 2100918.

[150] [150] Gao X X, Yin J, Zhu J, Chang J J, Zhang J C and Hao Y. 2024. Electrolyte-gated flexible MoS2 synaptic transistors with short-term plasticity.IEEE Electron Device Lett.45, 605–608.

[151] [151] Molina-Lopez F et al. 2019. Inkjet-printed stretchable and low voltage synaptic transistor array.Nat. Commun.10, 2676.

[152] [152] Peng Y J, Gao L, Liu C J, Deng J Y, Xie M, Bai L B, Wang G, Cheng Y H, Huang W and Yu J S. 2023. Stretchable organic electrochemical transistors via three-dimensional porous elastic semiconducting films for artificial synaptic applications.Nano Res.16, 10206–10214.

[153] [153] Li X H et al. 2023. 3D-printed intrinsically stretchable organic electrochemical synaptic transistor array.ACS Appl. Mater. Interfaces15, 41656–41665.

[154] [154] Oh S, Cho J I, Lee B H, Seo S, Lee J H, Choo H, Heo K, Lee S Y and Park J H. 2021. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation.Sci. Adv.7, eabg9450.

[155] [155] Shim H et al. 2019. Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems.Sci. Adv.5, eaax4961.

[156] [156] Pei J F et al. 2024. Scalable synaptic transistor memory from solution-processed carbon nanotubes for high-speed neuromorphic data processing.Adv. Mater.37, 2312783.

[157] [157] Yu T F, Chen H Y, Liao M Y, Tien H C, Chang T T, Chueh C C and Lee W Y. 2020. Solution-processable anion-doped conjugated polymer for nonvolatile organic transistor memory with synaptic behaviors.ACS Appl. Mater. Interfaces12, 33968–33978.

[158] [158] Yang Y T, Wu Y S, He W E, Tien H C, Yang W C, Michinobu T, Chen W C, Lee W Y and Chueh C C. 2022. Tuning ambipolarity of the conjugated polymer channel layers of floating-gate free transistors: from volatile memories to artificial synapses.Adv. Sci.9, 2203025.

[159] [159] Wei P, Wang X D, Li X L, Han S Y, Qiao N, Zhang P, Deng Y F, Zhang W, Bu L J and Lu G H. 2021. Reconfigurable multifunctional ambipolar polymer-blend transistors with improved switching-off capability.Adv. Funct. Mater.31, 2103369.

[160] [160] Wang Y et al. 2020. Modulation of binary neuroplasticity in a heterojunction-based ambipolar transistor.ACS Appl. Mater. Interfaces12, 15370–15379.

[161] [161] Yu R J, Li E L, Wu X M, Yan Y J, He W X, He L H, Chen J W, Chen H P and Guo T L. 2020. Electret-based organic synaptic transistor for neuromorphic computing.ACS Appl. Mater. Interfaces12, 15446–15455.

[162] [162] Yang W C, Lin Y C, Inagaki S, Shimizu H, Ercan E, Hsu L C, Chueh C C, Higashihara T and Chen W C. 2022. Low-energy-consumption and electret-free photosynaptic transistor utilizing poly (3-hexylthiophene)-based conjugated block copolymers.Adv. Sci.9, 2105190.

[163] [163] Moon H et al. 2015. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics.Nat. Mater.14, 628–635.

[164] [164] Jang B C, Seong H, Kim S K, Kim J Y, Koo B J, Choi J, Yang S Y, Im S G and Choi S Y. 2016. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition.ACS Appl. Mater. Interfaces8, 12951–12958.

[165] [165] Jang B C, Kim S, Yang S Y, Park J, Cha J H, Oh J, Choi J, Im S G, Dravid V P and Choi S Y. 2019. Polymer analog memristive synapse with atomic-scale conductive filament for flexible neuromorphic computing system.Nano Lett.19, 839–849.

[166] [166] Yang M H, Zhao X L, Tang Q X, Cui N, Wang Z Q, Tong Y H and Liu Y C. 2018. Stretchable and conformable synapse memristors for wearable and implantable electronics.Nanoscale10, 18135–18144.

[167] [167] Yi X H et al. 2019. Intrinsically stretchable resistive switching memory enabled by combining a liquid metal–based soft electrode and a metal–organic framework insulator.Adv. Electron. Mater.5, 1800655.

[168] [168] Park J et al. 2022. Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer.Nat. Commun.13, 5233.

[169] [169] Son D et al. 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders.Nat. Nanotechnol.9, 397–404.

[170] [170] Sim K, Rao Z, Zou Z N, Ershad F, Lei J M, Thukral A, Chen J, Huang Q A, Xiao J L and Yu C J. 2019. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces.Sci. Adv.5, eaav9653.

[171] [171] Meng J L et al. 2021.Flexible boron nitride-based memristor for in situdigital and analogue neuromorphic computing applications.Mater. Horiz.8, 538–546.

[172] [172] Bae H et al. 2019. Bioinspired polydopamine-based resistive-switching memory on cotton fabric for wearable neuromorphic device applications.Adv. Mater. Technol.4, 1900151.

[173] [173] Kim S H et al. 2021. A bioinspired stretchable sensory-neuromorphic system.Adv. Mater.33, 2104690.

[174] [174] Quiroga R Q, Reddy L, Kreiman G, Koch C and Fried I. 2005. Invariant visual representation by single neurons in the human brain.Nature435, 1102–1107.

[175] [175] Wang G Z, Wang R B, Kong W Z and Zhang J H. 2018. Simulation of retinal ganglion cell response using fast independent component analysis.Cogn. Neurodyn.12, 615–624.

[176] [176] Kumar D, Joharji L, Li H R, Rezk A, Nayfeh A and El-Atab N. 2023. Artificial visual perception neural system using a solution-processable MoS2-based in-memory light sensor.Light Sci. Appl.12, 109.

[177] [177] Han C, Han X W, Han J Y, He M Y, Peng S L, Zhang C Y, Liu X C, Gou J and Wang J. 2022. Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application.Adv. Funct. Mater.32, 2113053.

[178] [178] He J Q, Wei R L, Ge S P, Wu W Q, Guo J C, Tao J, Wang R, Wang C F and Pan C F. 2024. Artificial visualtactile perception array for enhanced memory and neuromorphic computations.InfoMat6, e12493.

[179] [179] Cao Y X et al. 2023. Neuromorphic visual artificial synapse in-memory computing systems based on GeOx-coated MXene nanosheets.Nano Energy112, 108441.

[180] [180] Lee Y et al. 2018. Stretchable organic optoelectronic sensorimotor synapse.Sci. Adv.4, eaat7387.

[181] [181] Ni Y, Liu J Q, Han H, Yu Q B, Yang L, Xu Z, Jiang C, Liu L and Xu W. 2024. Visualized in-sensor computing.Nat. Commun.15, 3454.

[182] [182] Bao H et al. 2022. Toward memristive in-memory computing: principles and applications.Front. Optoelectron.15, 23.

[183] [183] Ren Q Q, Zhu C Y, Ma S J, Wang Z Q, Yan J M, Wan T Q, Yan W C and Chai Y. 2024. Optoelectronic devices for insensor computing.Adv. Mater.2407476.

[184] [184] Meng J L, Wang T Y, Zhu H, Ji L, Bao W Z, Zhou P, Chen L, Sun Q Q and Zhang D W. 2022. Integrated insensor computing optoelectronic device for environment-adaptable artificial retina perception application.Nano Lett.22, 81–89.

[185] [185] Kwon S M, Cho S W, Kim M, Heo J S, Kim Y H and Park S K. 2019. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array.Adv. Mater.31, 1906433.

[186] [186] Kwon S M et al. 2021. Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits.Adv. Mater.33, 2105017.

[187] [187] Seo S et al. 2018. Artificial optic-neural synapse for colored and color-mixed pattern recognition.Nat. Commun.9, 5106.

[188] [188] Wang C Y et al. 2024. Strain-insensitive viscoelastic perovskite film for intrinsically stretchable neuromorphic vision-adaptive transistors.Nat. Commun.15, 3123.

[189] [189] Wang H L et al. 2018. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system.Adv. Mater.30, 1803961.

[190] [190] Chen S, Lou Z, Chen D and Shen G Z. 2018. An artificial flexible visual memory system based on an UV-motivated memristor.Adv. Mater.30, 1705400.

[191] [191] Xie T H et al. 2023. Carbon nanotube optoelectronic synapse transistor arrays with ultra-low power consumption for stretchable neuromorphic vision systems.Adv. Funct. Mater.33, 2303970.

[192] [192] Xu F, Zhang C, Zhao X L, Yu H Y, Zhao G D, Li J T, Wang B, Tong Y H, Tang Q X and Liu Y C. 2022. Intrinsically stretchable photonic synaptic transistors for retina-like visual image systems.J. Mater. Chem.C10, 10586–10594.

[193] [193] Shi J L, Jie J S, Deng W, Luo G, Fang X C, Xiao Y L, Zhang Y J, Zhang X J and Zhang X H. 2022. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks.Adv. Mater.34, 2200380.

[194] [194] Liao F Y et al. 2022. Bioinspired in-sensor visual adaptation for accurate perception.Nat. Electron.5, 84–91.

[195] [195] Jo C, Kim J, Kwak J Y, Kwon S M, Park J B, Kim J, Park G S, Kim M G, Kim Y H and Park S K. 2022. Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays.Adv. Mater.34, 2108979.

[196] [196] Liu W R, Chen W Z, Jin C X, Xu Y C, Shi X F, He B, Peng Y Y, Yang J L and Sun J. 2023. Organic optoelectrical synaptic transistors for color information processing.Appl. Phys. Lett.123, 193703.

[197] [197] Choi C, Seung H and Kim D H. 2022. Bio-inspired electronic eyes and synaptic photodetectors for mobile artificial vision.IEEE J. Flex. Electron.1, 76–87.

[198] [198] Zhang K et al. 2017. Origami silicon optoelectronics for hemispherical electronic eye systems.Nat. Commun.8, 1782.

[199] [199] Wang M, Luo Y F, Wang T, Wan C J, Pan L, Pan S W, He K, Neo A and Chen X D. 2021. Artificial skin perception.Adv. Mater.33, 2003014.

[200] [200] Sundaram S, Kellnhofer P, Li Y Z, Zhu J Y, Torralba A and Matusik W. 2019. Learning the signatures of the human grasp using a scalable tactile glove.Nature569, 698–702.

[201] [201] Yu H B et al. 2024. Skin-inspired capacitive flexible tactile sensor with an asymmetric structure for detecting directional shear forces.Adv. Sci.11, 2305883.

[202] [202] Lv C Y, Tian C C, Jiang J S, Dang Y, Liu Y, Duan X X, Li Q N, Chen X J and Xie M Y. 2023. Ultrasensitive linear capacitive pressure sensor with wrinkled microstructures for tactile perception.Adv. Sci.10, 2206807.

[203] [203] Huang X D, Ma Z Y, Xia W T, Hao L X, Wu Y H, Lu S, Luo Y S, Qin L G and Dong G N. 2024. A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure.Nano Energy129, 110019.

[204] [204] Zhang J H et al. 2022. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency.Nat. Commun.13, 5076.

[205] [205] Chen Y H et al. 2019. Piezotronic graphene artificial sensory synapse.Adv. Funct. Mater.29, 1900959.

[206] [206] Sun F Q, Lu Q F, Hao M M, Wu Y, Li Y, Liu L, Li L H, Wang Y Y and Zhang T. 2022. An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and feedback functions.npj Flex. Electron.6, 72.

[207] [207] Wan C J et al. 2018. An artificial sensory neuron with tactile perceptual learning.Adv. Mater.30, 1801291.

[208] [208] Tan H W, Tao Q Z, Pande I, Majumdar S, Liu F, Zhou Y F, Persson P O , Rosen J and Van Dijken S. 2020. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves.Nat. Commun.11, 1369.

[209] [209] Jiang C P, Liu J Q, Yang L, Gong J D, Wei H H and Xu W T. 2022. A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition.Adv. Sci.9, 2106124.

[210] [210] Zeng J H, Chen L B, Bu T Z, Wang Z Y, Gong L K, Zhang Z B, Zhao J Q, Lin Wang Z and Zhang C. 2024. Intrinsically stretchable tribotronic mechanoplastic artificial synapse.Chem. Eng. J.492, 152412.

[211] [211] Song Z W et al. 2022. A flexible triboelectric tactile sensor for simultaneous material and texture recognition.Nano Energy93, 106798.

[212] [212] Cheng Y, Wu D, Hao S F, Jie Y, Cao X, Wang N and Wang Z L. 2019. Highly stretchable triboelectric tactile sensor for electronic skin.Nano Energy64, 103907.

[213] [213] Lee Y R, Trung T Q, Hwang B U and Lee N E. 2020. A flexible artificial intrinsic-synaptic tactile sensory organ.Nat. Commun.11, 2753.

[214] [214] Lee Y et al. 2018. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range.ACS Nano12, 4045–4054.

[215] [215] Huynh H Q, Trung T Q, Bag A, Do T D, Sultan M J, Kim M and Lee N E. 2023. Bio-inspired artificial fast-adaptive and slow-adaptive mechanoreceptors with synapse-like functions.Adv. Funct. Mater.33, 2303535.

[216] [216] Kim Y et al. 2018. A bioinspired flexible organic artificial afferent nerve.Science360, 998–1003.

[217] [217] Wu M G et al. 2023. Stretchable, skin-conformable neuromorphic system for tactile sensory recognizing and encoding.InfoMat5, e12472.

[218] [218] Chun S et al. 2021. An artificial neural tactile sensing system.Nat. Electron.4, 429–438.

[219] [219] Sundaram S. 2020. How to improve robotic touch.Science370, 768–769.

[220] [220] Tee B C K et al. 2015. A skin-inspired organic digital mechanoreceptor.Science350, 313–316.

[221] [221] Kang J et al. 2018. Tough and water-insensitive self-healing elastomer for robust electronic skin.Adv. Mater.30, 1706846.

[222] [222] Kim S H et al. 2019. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways.ACS Nano13, 6531–6539.

[223] [223] Wang L L, Jackman J A, Park J H, Tan E L and Cho N J. 2017. A flexible, ultra-sensitive chemical sensor with 3D biomimetic templating for diabetes-related acetone detection.J. Mater. Chem.B5, 4019–4024.

[224] [224] Duy L T, Trung T Q, Hanif A, Siddiqui S, Roh E, Lee W and Lee N E. 2017. A stretchable and highly sensitive chemical sensor using multilayered network of polyurethane nanofibres with self-assembled reduced graphene oxide.2D Mater.4, 025062.

[225] [225] Li H Y, Lee C S, Kim D H and Lee J H. 2018. Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection.ACS Appl. Mater. Interfaces10, 27858–27867.

[226] [226] Tang N, Zhou C, Xu L H, Jiang Y, Qu H M and Duan X X. 2019. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography.ACS Sens.4, 726–732.

[227] [227] Punetha D, Kar M and Pandey S K. 2020. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing.Sci. Rep.10, 2151.

[228] [228] Wu Q W, Shen W F, Lv D W, Chen W G, Song W J and Tan R Q. 2021. An enhanced flexible room temperature ammonia gas sensor based on GP-PANI/PVDF multi-hierarchical nanocomposite film.Sens. ActuatorsB334, 129630.

[229] [229] Moon D B, Bag A, Lee H B, Meeseepong M, Lee D H and Lee N E. 2021. A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods.Sens. ActuatorsB345, 130373.

[230] [230] Zhang F Z, Lin Q J, Han F, Wang Z W, Tian B, Zhao L B, Dong T and Jiang Z D. 2022. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature.Microsyst. Nanoeng.8, 40.

[231] [231] Yang L et al. 2022. Moisture-resistant, stretchable NOx gas sensors based on laser-induced graphene for environmental monitoring and breath analysis.Microsyst. Nanoeng.8, 78.

[232] [232] Lim H, Kwon H, Kang H, Jang J E and Kwon H J. 2023. Semiconducting MOFs on ultraviolet laser-induced graphene with a hierarchical pore architecture for NO2 monitoring.Nat. Commun.14, 3114.

[233] [233] Zhao G D, Sun J, Zhang M X, Guo S L, Wang X, Li J T, Tong Y H, Zhao X L, Tang Q X and Liu Y C. 2023. Highly strain-stable intrinsically stretchable olfactory sensors for imperceptible health monitoring.Adv. Sci.10, 2302974.

[234] [234] Wang T, Huang H M, Wang X X and Guo X. 2021. An artificial olfactory inference system based on memristive devices.InfoMat3, 804–813.

[235] [235] Ban C Y et al. 2021. An artificial olfactory memory system for monitoring and recording of volatile organic compounds.Adv. Mater. Technol.6, 2100366.

[236] [236] Li J, Fu W H, Lei Y X, Li L K, Zhu W Q and Zhang J H. 2022. Oxygen-vacancy-induced synaptic plasticity in an electrospun InGdO nanofiber transistor for a gas sensory system with a learning function.ACS Appl. Mater. Interfaces14, 8587–8597.

[237] [237] Han J K, Kang M G, Jeong J, Cho I, Yu J M, Yoon K J, Park I and Choi Y K. 2022. Artificial olfactory neuron for an insensor neuromorphic nose.Adv. Sci.9, 2106017.

[238] [238] Song H W, Moon D, Won Y, Cha Y K, Yoo J, Park T H and Oh J H. 2024. A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices.Sci. Adv.10, eadl2882.

[239] [239] Dong L Y, Xue B J, Wei G D, Yuan S, Chen M, Liu Y, Su Y, Niu Y, Xu B S and Wang P. 2024. Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration.Adv. Sci.11, 2403665.

[240] [240] Song Z Q, Tong Y H, Zhao X L, Ren H, Tang Q X and Liu Y C. 2019. A flexible conformable artificial organdamage memory system towards hazardous gas leakage based on a single organic transistor.Mater. Horiz.6, 717–726.

[241] [241] Chouhdry H H, Lee D H, Bag A and Lee N E. 2023. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor.Nat. Commun.14, 821.

[242] [242] Deng Y P et al. 2023. A Flexible and biomimetic olfactory synapse with gasotransmitter-mediated plasticity.Adv. Funct. Mater.33, 2214139.

[243] [243] Zollo L et al. 2019. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands.Sci. Robot.4, eaau9924.

[244] [244] Clites T R, Carty M J, Ullauri J B, Carney M E, Mooney L M, Duval J F, Srinivasan S S and Herr H M. 2018. Proprioception from a neurally controlled lower-extremity prosthesis.Sci. Transl. Med.10, eaap8373.

[245] [245] Wang W C et al. 2023. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft eskin.Science380, 735–742.

[246] [246] Ortiz-Catalan M, Hkansson B and Brnemark R. 2014. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs.Sci. Transl. Med.6, 257re6.

[247] [247] Wenger N, Moraud E M, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S and Courtine G. 2014. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury.Sci. Transl. Med.6, 255ra133.

[248] [248] Wagner F B et al. 2018. Targeted neurotechnology restores walking in humans with spinal cord injury.Nature563, 65–71.

[249] [249] D’Anna E et al. 2019. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback.Sci. Robot.4, eaau8892.

[250] [250] George J A et al. 2019. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand.Sci. Robot.4, eaax2352.

[251] [251] Petrini F M et al. 2019. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain.Nat. Med.25, 1356–1363.

[252] [252] Vu P P et al. 2020. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees.Sci. Transl. Med.12, eaay2857.

[253] [253] Oh H, Yi G C, Yip M and Dayeh S A. 2020. Scalable tactile sensor arrays on flexible substrates with high spatiotemporal resolution enabling slip and grip for closed-loop robotics.Sci. Adv.6, eabd7795.

[254] [254] Bonizzato M and Martinez M. 2021. An intracortical neuroprosthesis immediately alleviates walking deficits and improves recovery of leg control after spinal cord injury.Sci. Transl. Med.13, eabb4422.

[255] [255] Rowald A et al. 2022. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis.Nat. Med.28, 260–271.

[256] [256] Kathe C et al. 2022. The neurons that restore walking after paralysis.Nature611, 540–547.

[257] [257] Gu G Y et al. 2023. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback.Nat. Biomed. Eng.7, 589–598.

[258] [258] Lorach H et al. 2023. Walking naturally after spinal cord injury using a brain–spine interface.Nature618, 126–133.

[259] [259] Milekovic T et al. 2023. A spinal cord neuroprosthesis for locomotor deficits due to Parkinson’s disease.Nat. Med.29, 2854–2865.

[260] [260] Ortiz-Catalan M et al. 2023. A highly integrated bionic hand with neural control and feedback for use in daily life.Sci. Robot.8, eadf7360.

[261] [261] Nanivadekar A C et al. 2024. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation.Nat. Biomed. Eng.8, 992–1003.

[262] [262] Osborn L E et al. 2024. Evoking natural thermal perceptions using a thin-film thermoelectric device with high cooling power density and speed.Nat. Biomed. Eng.8, 1004–1017.

[263] [263] Valle G et al. 2024. Biomimetic computer-to-brain communication enhancing naturalistic touch sensations via peripheral nerve stimulation.Nat. Commun.15, 1151.

[264] [264] Song H et al. 2024. Continuous neural control of a bionic limb restores biomimetic gait after amputation.Nat. Med.30, 2010–2019.

[265] [265] Park S I et al. 2015. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics.Nat. Biotechnol.33, 1280–1286.

[266] [266] Koo J et al. 2018. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy.Nat. Med.24, 1830–1836.

[267] [267] Liu Y X et al. 2019. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation.Nat. Biomed. Eng.3, 58–68.

[268] [268] Zhang Y et al. 2019. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.Sci. Adv.5, eaaw5296.

[269] [269] Liu Y X et al. 2020. Morphing electronics enable neuromodulation in growing tissue.Nat. Biotechnol.38, 1031–1036.

[270] [270] Song K I et al. 2020. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces.Nat. Commun.11, 4195.

[271] [271] Choi Y S et al. 2020. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration.Nat. Commun.11, 5990.

[272] [272] Seo H et al. 2021. Durable and fatigue-resistant soft peripheral neuroprosthetics forin vivobidirectional signaling.Adv. Mater.33, 2007346.

[273] [273] Reeder J T et al. 2022. Soft, bioresorbable coolers for reversible conduction block of peripheral nerves.Science377, 109–115.

[274] [274] Lee G et al. 2022. A bioresorbable peripheral nerve stimulator for electronic pain block.Sci. Adv.8, eabp9169.

[275] [275] Zhao Y C et al. 2022. Soft strain-insensitive bioelectronics featuring brittle materials.Science378, 1222–1227.

[276] [276] Jiang Y et al. 2023. A universal interface for plug-and-play assembly of stretchable devices.Nature614, 456–462.

[277] [277] Strakosas X et al. 2023. Metabolite-inducedin vivofabrication of substrate-free organic bioelectronics.Science379, 795–802.

[278] [278] Rochford A E et al. 2023. Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics.Sci. Adv.9, eadd8162.

[279] [279] Zhou W J L et al. 2023. Soft and stretchable organic bioelectronics for continuous intraoperative neurophysiological monitoring during microsurgery.Nat. Biomed. Eng.7, 1270–1281.

[280] [280] Yi J Q et al. 2023. Water-responsive supercontractile polymer films for bioelectronic interfaces.Nature624, 295–302.

[281] [281] Seong D et al. 2024. Sticky and strain-gradient artificial epineurium for sutureless nerve repair in rodents and nonhuman primates.Adv. Mater.36, 2307810.

[282] [282] Sun P C et al. 2024. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves.Nat. Commun.15, 4721.

[283] [283] Liu F Y, Deswal S, Christou A, Shojaei Baghini M, Chirila R, Duval J F, Srinivasan S S and Herr H M. 2022. Printed synaptic transistor–based electronic skin for robots to feel and learn.Sci. Robot.7, eabl7286.

[284] [284] Lee Y et al. 2023. A low-power stretchable neuromorphic nerve with proprioceptive feedback.Nat. Biomed. Eng.7, 511–519.

[285] [285] Chen L B, Karilanova S, Chaki S, Wen C Y, Wang L S, Winblad B, Zhang S L, zelikkale A and Zhang Z B. 2024. Spike timing–based coding in neuromimetic tactile system enables dynamic object classification.Science384, 660–665.

[286] [286] Seo D G et al. 2019. Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics.Nano Energy65, 104035.

[287] [287] Liu Y Q, Li E L, Wang X M, Chen Q Z, Zhou Y L, Hu Y Y, Chen G X, Chen H P and Guo T L. 2020. Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection.Nano Energy78, 105403.

[288] [288] Yun S Y, Han J K, Lee S W, Yu J M, Jeon S B and Choi Y K. 2023. Self-aware artificial auditory neuron with a triboelectric sensor for spike-based neuromorphic hardware.Nano Energy109, 108322.

[289] [289] Yang L, Wang Z X, Zhang S, Li Y, Jiang C P, Sun L and Xu W T. 2023. Neuromorphic gustatory system with salttaste perception, information processing, and excessive-intake warning capabilities.Nano Lett.23, 8–16.

[290] [290] Ghosh S, Pannone A, Sen D, Wali A, Ravichandran H and Das S. 2023. An all 2D bio-inspired gustatory circuit for mimicking physiology and psychology of feeding behavior.Nat. Commun.14, 6021.

[291] [291] Liu G C, Wen W, Zhao Z Y, Huang X, Li Y F, Qin M C, Pan Z C, Guo Y L and Liu Y Q. 2023. Bionic tactile-gustatory receptor for object identification based on all-polymer electrochemical transistor.Adv. Mater.35, 2300242.

[292] [292] He Y F, Ge Z L, Li Z Y, Li Z X, Liu R P, Zhang L M, Lan L Y, Yue W and Xie Z. 2024. All-polymer organic electrochemical synaptic transistor with controlled ionic dynamics for high-performance wearable and sustainable reservoir computing.Adv. Funct. Mater.352415595.

[293] [293] Yu J R, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J, Chen Y H, Zhang H, Sun Q J and Wang Z L. 2021. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure.Sci. Adv.7, eabd9117.

[294] [294] Wu X M, Li E L, Liu Y Q, Lin W K, Yu R J, Chen G X, Hu Y Y, Chen H P and Guo T L. 2021. Artificial multisensory integration nervous system with haptic and iconic perception behaviors.Nano Energy85, 106000.

[295] [295] Lee H R, Lee D and Oh J H. 2021. A hippocampus-inspired dual-gated organic artificial synapse for simultaneous sensing of a neurotransmitter and light.Adv. Mater.33, 2100119.

[296] [296] Liu M W et al. 2022. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments.Nat. Commun.13, 79.

[297] [297] Li P Z et al. 2024. Reconfigurable optoelectronic transistors for multimodal recognition.Nat. Commun.15, 3257.

[298] [298] Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L and Jiang C M. 2024. Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene.Adv. Mater.36, 2407751.

[299] [299] Chen H M, Shan L T, Gao C S, Chen C, Liu D, Chen H P, Guo T L and Hu W P. 2024. Artificial multisensory system with optical feedback for multimodal perceptual imaging.Chem. Eng. J.487, 150542.

[300] [300] Zhu M L, Sun Z D and Lee C. 2022. Soft modular glove with multimodal sensing and augmented haptic feedback enabled by materials’ multifunctionalities.ACS Nano16, 14097–14110.

[301] [301] Wan H C, Zhao J Y, Lo L W, Cao Y Q, Sepu′lveda N and Wang C. 2021. Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor.ACS Nano15, 14587–14597.

[302] [302] Jiang C P, Xu H H, Yang L, Liu J Q, Li Y, Takei K and Xu W T. 2024. Neuromorphic antennal sensory system.Nat. Commun.15, 2109.

[303] [303] Kim Y, Lee K, Lee J, Jang S, Kim H, Lee H, Lee S W, Wang G and Park C. 2021. Bird-inspired self-navigating artificial synaptic compass.ACS Nano15, 20116–20126.

[304] [304] Zheng Y K, Ghosh S and Das S. 2024. A butterfly-inspired multisensory neuromorphic platform for integration of visual and chemical cues.Adv. Mater.36, 2307380.

[305] [305] Wang Y, Gong Y, Huang S M, Xing X C, Lv Z Y, Wang J J, Yang J Q, Zhang G H, Zhou Y and Han S T. 2021. Memristor-based biomimetic compound eye for real-time collision detection.Nat. Commun.12, 5979.

[306] [306] Trung T Q and Lee N E. 2017. Recent progress on stretchable electronic devices with intrinsically stretchable components.Adv. Mater.29, 1603167.

[307] [307] Huang X Y, Wang L, Wang H C, Zhang B Z, Wang X B, Stening R Y Z, Sheng X and Yin L. 2020. Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics.Small16, 1902827.

[308] [308] Dargusch M, Liu W D and Chen Z G. 2020. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems.Adv. Sci.7, 2001362.

[309] [309] Zhang W J, Wang X C, Duan J, Zheng Z F, Zhang J, Hang G G and Liu Z. 2024. Recent research advances in textile-based flexible power supplies and displays for smart wearable applications.ACS Appl. Electron. Mater.6, 5429–5455.

[310] [310] Ouyang W et al. 2023. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals.Nat. Biomed. Eng.7, 1252–1269.

[311] [311] Gutruf P et al. 2019. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models.Nat. Commun.10, 5742.

[312] [312] Niu S M et al. 2019. A wireless body area sensor network based on stretchable passive tags.Nat. Electron.2, 361–368.

Tools

Get Citation

Copy Citation Text

Kim Jaehyon, Lee Sungjun, Yoon Jiyong, Son Donghee. Soft sensory-neuromorphic system for closed-loop neuroprostheses[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 42001

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: Oct. 10, 2024

Accepted: Sep. 9, 2025

Published Online: Sep. 9, 2025

The Author Email:

DOI:10.1088/2631-7990/adb9aa

Topics