Laser & Optoelectronics Progress, Volume. 61, Issue 16, 1611010(2024)

Advances in Differentiable Rendering Based on Three-Dimensional Gaussian Splatting (Invited)

Jian Gao1, Linzhuo Chen1, Qiu Shen2, Xun Cao2, and Yao Yao1、*
Author Affiliations
  • 1School of Intelligence Science and Technology, Nanjing University, Suzhou 215163, Jiangsu, China
  • 2School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
  • show less
    Figures & Tables(14)
    Research trends on 3D Gaussian splatting technology
    Overview of advances on 3D Gaussian splatting technology
    Overview of 3D Gaussian splatting technology[8]
    3D Gaussian splatting technology utilizes adaptive density control for densification[8]
    Roadmap for Scaffold-GS[30]
    Aliasing in 3D Gaussian splatting technology[35]
    Comparison of 2DGS, 3DGS and SuGaR on the surface mesh extraction task[45]
    Roadmap for GS-IR[46]
    Physical-based realistic point cloud rendering pipeline[49]. (a) Point cloud; (b) rendered normal map; (c) ambient occlusion map;(d) realistic relighting
    Flowchart of Gaussian-Flow technology[66]
    • Table 1. Quantitative comparison results of the improved schemes of 3DGS on the Mip-NeRF 360 dataset

      View table

      Table 1. Quantitative comparison results of the improved schemes of 3DGS on the Mip-NeRF 360 dataset

      Improved schemePSNR↑SSIM↑LPIPS↓FPS↑Memory↓
      3DGS27.210.8150.214134734
      O-GS27.170.8360.210
      GaussianPro27.920.8250.208108
      Pixel-GS27.880.8340.17689
      Mini-Splatting27.540.8320.17583<50
      FreGS27.850.8260.209
      Scaffold-GS28.840.8480.220102156
      GES26.910.7940.250186377
      Spec-Gaussian28.010.8120.22270245
    • Table 2. Quantitative comparison results of dynamic reconstruction methods on the D-NeRF synthetic dataset

      View table

      Table 2. Quantitative comparison results of dynamic reconstruction methods on the D-NeRF synthetic dataset

      MethodPSNR↑SSIM↑LPIPS↓FPS↑Size
      4DGS34.050.9800.02082800
      D3DGS39.510.9900.01230800
      CoGS37.900.9830.017800
      E3DGS32.070.960150800
      4DG34.090.9800.020114800
      NPG33.860.9740.04220800
      SCGS43.310.9980.008400
      DynMF36.800.9830.020>300400
      GauFRe34.800.9820.02050400
    • Table 3. Quantitative comparison of large scene reconstruction results

      View table

      Table 3. Quantitative comparison of large scene reconstruction results

      MethodResidenceRubble
      PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓
      MegaNeRF22.080.6280.48924.060.5530.516
      SwitchNeRF22.570.6540.45724.310.5620.496
      GridNeRF23.770.8020.13724.130.7670.207
      Fed3DGS20.000.6650.34420.620.5880.437
      CityGaussian22.000.8130.21125.770.8130.228
      VastGaussian24.250.8520.12426.920.8230.132
      MethodBuildingCampus
      PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓
      MegaNeRF20.930.5470.50423.420.5370.618
      SwitchNeRF21.540.5790.47423.620.5410.609
      GridNeRF24.900.7570.162
      Fed3DGS18.660.6020.36221.640.6350.436
      CityGaussian21.550.7780.246
      VastGaussian23.500.8040.13026.000.8160.151
    • Table 4. Quantitative comparison of sparse view reconstruction results on the LLFF dataset

      View table

      Table 4. Quantitative comparison of sparse view reconstruction results on the LLFF dataset

      MethodThree viewsSix viewsNine views
      PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓PSNR↑SSIM↑LPIPS↓
      DNGaussian19.120.5910.29422.180.7550.19823.170.7880.180
      CoherentGS20.330.7250.180
      FSGS20.430.6820.24824.090.8230.14525.310.8600.122
      CoR-GS20.450.7120.19624.490.8370.11526.060.8740.089
    Tools

    Get Citation

    Copy Citation Text

    Jian Gao, Linzhuo Chen, Qiu Shen, Xun Cao, Yao Yao. Advances in Differentiable Rendering Based on Three-Dimensional Gaussian Splatting (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: May. 27, 2024

    Accepted: Jun. 27, 2024

    Published Online: Aug. 12, 2024

    The Author Email: Yao Yao (yaoyao@nju.edu.cn)

    DOI:10.3788/LOP241369

    CSTR:32186.14.LOP241369

    Topics