Acta Optica Sinica, Volume. 43, Issue 15, 1511003(2023)

Compressive Hyperspectral Computational Imaging via Spatio-Spectral Coding

Chang Xu1, Tingfa Xu1,2、*, Guokai Shi3, Xi Wang4, Axin Fan1,2, Yuhan Zhang1,2, and Jianan Li1,2
Author Affiliations
  • 1Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
  • 3Research and Development Department of Military Service Accreditation System, North Automatic Control Technology Institute, Taiyuan 030006, Shanxi, China
  • 4School of Printing & Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
  • show less
    References(85)

    [1] Vane G, Goetz A F H. Terrestrial imaging spectrometry: current status, future trends[J]. Remote Sensing of Environment, 44, 117-126(1993).

    [2] Hunt G R. Near-infrared (1.3-2.4 μm) spectra of alteration minerals:potential for use in remote sensing[J]. Geophysics, 44, 1974-1986(1979).

    [3] Haboudane D, Miller J R, Pattey E et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 90, 337-352(2004).

    [4] Kruse F A, Boardman J W, Huntington J F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 1388-1400(2003).

    [5] Brando V E, Dekker A G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality[J]. IEEE Transactions on Geoscience and Remote Sensing, 41, 1378-1387(2003).

    [6] Gålfalk M, Olofsson G, Crill P et al. Making methane visible[J]. Nature Climate Change, 6, 426-430(2016).

    [7] Gowen A A, O'Donnell C P, Cullen P J et al. Hyperspectral imaging: an emerging process analytical tool for food quality and safety control[J]. Trends in Food Science & Technology, 18, 590-598(2007).

    [8] Lu G L, Fei B W. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 19, 010901(2014).

    [9] Johansen T H, Møllersen K, Ortega S et al. Recent advances in hyperspectral imaging for melanoma detection[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 12, e1465(2020).

    [10] Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 20, 689-707(2016).

    [11] Pizzolante R, Carpentieri B. Visualization, band ordering and compression of hyperspectral images[J]. Algorithms, 5, 76-97(2012).

    [12] Wehr A, Lohr U. Airborne laser scanning: an introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 68-82(1999).

    [13] Green R O, Eastwood M L, Sarture C M et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)[J]. Remote Sensing of Environment, 65, 227-248(1998).

    [14] Mouroulis P, Green R O, Chrien T G. Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information[J]. Applied Optics, 39, 2210-2220(2000).

    [15] Shao H, Wang J Y, Xue Y Q. Key technology of pushbroom hyperspectral imager (PHI)[J]. Journal of Remote Sensing, 2, 251-254(1998).

    [16] He Z P, Li C L, Xu R et al. Spectrometers based on acousto-optic tunable filters for in situ lunar surface measurement[J]. Journal of Applied Remote Sensing, 13, 027502(2019).

    [17] He Z P, Li C L, Lü G et al. Research and applications of in-situ lunar surface spectral detection technology[J]. Infrared and Laser Engineering, 49, 20201006(2020).

    [18] Suo J L, Liu Y B, Ji X Y et al. Computational photography: keys, methods and applications[J]. Acta Automatica Sinica, 41, 669-685(2015).

    [19] Shao X P, Liu F, Li W et al. Latest progress in computational imaging technology and application[J]. Laser & Optoelectronics Progress, 57, 020001(2020).

    [20] Gao D H. Research on high-resolution computational imaging method based on coding perception[D], 3-7(2013).

    [21] Salvi J, Pagès J, Batlle J. Pattern codification strategies in structured light systems[J]. Pattern Recognition, 37, 827-849(2004).

    [22] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995).

    [23] Natterer F, Wang G. The mathematics of computerized tomography[J]. Medical Physics, 29, 107-108(2002).

    [24] Adelson E H, Wang J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 99-106(1992).

    [25] Wu J C, Zhang H, Zhang W H et al. Single-shot lensless imaging with Fresnel zone aperture and incoherent illumination[J]. Light: Science & Applications, 9, 53(2020).

    [26] Zhu Y B, Lei X, Wang K X et al. Compact CMOS spectral sensor for the visible spectrum[J]. Photonics Research, 7, 961-966(2019).

    [27] Gong W L, Han S S. Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints[J]. Physics Letters A, 376, 1519-1522(2012).

    [28] Xiangli B, Zhao B C, Xue M Q. Spatially modulated imaging interferometry[J]. Acta Optica Sinica, 18, 18-22(1998).

    [29] Rafert J B, Otten L J, Butler E W et al. Satellite sends hyperspectral images from space[J]. Laser Focus World, 37, 181-183(2001).

    [30] Descour M, Dereniak E. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results[J]. Applied Optics, 34, 4817-4826(1995).

    [31] Hagen N, Dereniak E L. New grating designs for a CTIS imaging spectrometer[J]. Proceedings of SPIE, 6565, 65650N(2007).

    [32] Love S P, Graff D L. Full-frame programmable spectral filters based on micro-mirror arrays[J]. Proceedings of SPIE, 8618, 86180C(2013).

    [33] Cortez D, Nunes P, de Sequeira M M et al. Image segmentation towards new image representation methods[J]. Signal Processing: Image Communication, 6, 485-498(1995).

    [34] Fernandez C, Guenther B D, Gehm M E et al. Longwave infrared (LWIR) coded aperture dispersive spectrometer[J]. Optics Express, 15, 5742-5753(2007).

    [35] Shannon C E. Communication in the presence of noise[J]. Proceedings of the IRE, 37, 10-21(1949).

    [36] Candès E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [37] Candès E. Compressive sampling[C], 1433-1452(2009).

    [38] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [39] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 59, 1207-1223(2006).

    [40] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [41] Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [42] Shi G M, Liu D H, Gao D H et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica, 37, 1070-1081(2009).

    [44] Wakin M B, Laska J N, Duarte M F et al. An architecture for compressive imaging[C], 1273-1276(2007).

    [45] Sun T, Kelly K. Compressive sensing hyperspectral imager[C], CTuA5(2009).

    [46] August Y, Vachman C, Rivenson Y et al. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 52, D46-D54(2013).

    [47] Lin X, Wetzstein G, Liu Y B et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 39, 2044-2047(2014).

    [48] Lin X, Liu Y B, Wu J M et al. Spatial-spectral encoded compressive hyperspectral imaging[J]. ACM Transactions on Graphics, 33, 233(2014).

    [49] Gehm M E, John R, Brady D J et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 15, 14013-14027(2007).

    [50] Wagadarikar A, John R, Willett R et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 47, B44-B51(2008).

    [51] Wagadarikar A A, Pitsianis N P, Sun X B et al. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 17, 6368-6388(2009).

    [52] Kittle D, Choi K, Wagadarikar A et al. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Applied Optics, 49, 6824-6833(2010).

    [53] Arguello H, Arce G R. Code aperture design for compressive spectral imaging[C], 1434-1438(2010).

    [54] Wu Y H, Mirza I O, Arce G R et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 36, 2692-2694(2011).

    [55] Arguello H, Rueda H, Wu Y H et al. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 52, D12-D21(2013).

    [56] Arguello H, Arce G R. Colored coded aperture design by concentration of measure in compressive spectral imaging[J]. IEEE Transactions on Image Processing, 23, 1896-1908(2014).

    [57] Rueda H, Arguello H, Arce G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A, 32, 80-89(2014).

    [58] Rueda H, Arguello H, Arce G R. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays[J]. Applied Optics, 55, 9584-9593(2016).

    [59] Correa C V, Arguello H, Arce G R. Snapshot colored compressive spectral imager[J]. Journal of the Optical Society of America A, 32, 1754-1763(2015).

    [60] Hinojosa C A, Correa C V, Arguello H et al. Compressive spectral imaging using multiple snapshot colored-mosaic detector measurements[J]. Proceedings of SPIE, 9870, 987004(2016).

    [61] Salazar E, Arce G R. Coded aperture optimization in spatial spectral compressive spectral imagers[J]. IEEE Transactions on Computational Imaging, 6, 764-777(2020).

    [62] Wang L Z, Xiong Z W, Gao D H et al. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 54, 848-858(2015).

    [63] Wang L Z, Xiong Z W, Shi G M et al. Compressive hyperspectral imaging with complementary RGB measurements[C](2017).

    [64] Feng W Y, Rueda H, Fu C et al. 3D compressive spectral integral imaging[J]. Optics Express, 24, 24859-24871(2016).

    [65] Zhang H, Ma X, Arce G R. Compressive spectral imaging approach using adaptive coded apertures[J]. Applied Optics, 59, 1924-1938(2020).

    [66] August Y, Stern A. Compressive sensing spectrometry based on liquid crystal devices[J]. Optics Letters, 38, 4996-4999(2013).

    [67] August I, Oiknine Y, AbuLeil M et al. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder[J]. Scientific Reports, 6, 23524(2016).

    [68] Farber V, Oiknine Y, August I et al. Compressive 4D spectro-volumetric imaging[J]. Optics Letters, 41, 5174-5177(2016).

    [69] Oiknine Y, August I, Stern A. Along-track scanning using a liquid crystal compressive hyperspectral imager[J]. Optics Express, 24, 8446-8457(2016).

    [70] Shabtay G, Eidinger E, Zalevsky Z et al. Tunable birefringent filters-optimal iterative design[J]. Optics Express, 10, 1534-1541(2002).

    [71] Woltman S J, Jay G D, Crawford G P. Liquid-crystal materials find a new order in biomedical applications[J]. Nature Materials, 6, 929-938(2007).

    [72] Aharon O, Abdulhalim I. Liquid crystal Lyot tunable filter with extended free spectral range[J]. Optics Express, 17, 11426-11433(2009).

    [73] Wang X, Zhang Y H, Ma X et al. Compressive spectral imaging system based on liquid crystal tunable filter[J]. Optics Express, 26, 25226-25243(2018).

    [74] Wang X, Xu T F, Zhang Y H et al. Backtracking reconstruction network for three-dimensional compressed hyperspectral imaging[J]. Remote Sensing, 14, 2406(2022).

    [75] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).

    [76] Bioucas-Dias J M, Figueiredo M A T. A new twIst: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 16, 2992-3004(2007).

    [77] Wright S J, Nowak R D, Figueiredo M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 57, 2479-2493(2009).

    [78] Xu C, Xu T F, Yan G et al. Super-resolution compressive spectral imaging via two-tone adaptive coding[J]. Photonics Research, 8, 395-411(2020).

    [79] Zhang Y H, Xu T F, Wang X et al. Real-time adaptive coded aperture: application to the compressive spectral imaging system[J]. Proceedings of SPIE, 11353, 113531B(2020).

    [80] Wang X, Xu T F, Zhang Y H et al. A multi-channel spectral coding method for the coded aperture tunable filter spectral imager[J]. Proceedings of SPIE, 11353, 1135318(2020).

    [81] Zhang Y H, Xu T F, Wang X et al. Adaptive compressive coding method based on spectral image region segmentation[J]. Proceedings of SPIE, 12281, 1228103(2022).

    [82] Wang Y H, Louie D C, Cai J Y et al. Deep learning enhances polarization speckle for in vivo skin cancer detection[J]. Optics & Laser Technology, 140, 107006(2021).

    [83] Fan A X, Xu T F, Teng G E et al. Hyperspectral polarization-compressed imaging and reconstruction with sparse basis optimized by particle swarm optimization[J]. Chemometrics and Intelligent Laboratory Systems, 206, 104163(2020).

    [84] Fan A X, Xu T F, Wang X et al. Scaling-based two-step reconstruction in full polarization-compressed hyperspectral imaging[J]. Sensors, 20, 7120(2020).

    [85] Fan A X, Xu T F, Ma X et al. Four-dimensional compressed spectropolarimetric imaging[J]. Signal Processing, 195, 108437(2022).

    Tools

    Get Citation

    Copy Citation Text

    Chang Xu, Tingfa Xu, Guokai Shi, Xi Wang, Axin Fan, Yuhan Zhang, Jianan Li. Compressive Hyperspectral Computational Imaging via Spatio-Spectral Coding[J]. Acta Optica Sinica, 2023, 43(15): 1511003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Mar. 29, 2023

    Accepted: Jun. 30, 2023

    Published Online: Aug. 18, 2023

    The Author Email: Xu Tingfa (ciom_xtf1@bit.edu.cn)

    DOI:10.3788/AOS230748

    Topics