Journal of Applied Optics, Volume. 43, Issue 4, 669(2022)
Fine-grained target classification method based on deep clustering
[1] [1] [1]罗建豪, 吴建鑫基于深度卷积特征的细粒度图像分类研究综述自动化学报20174381310.16383/j.aas.2017.c160425LUOJianhao, WUJianxinA survey on fine-grained image categorization using deep convolutional featuresActa Automatica Sinica20174381310.16383/j.aas.2017.c160425
[2] [2] HE K, ZHANG X, REN S, et al. Deep residual learning f image recognition [C]Proceedings of of the IEEE Conference On Computer Vision Pattern Recognition. USA: IEEE, 2016: 770778.
[3] [3] WAH C, BRANSON S, WELINDER P, et al. The CaltechUCSD Birds2002011 Dataset [C]. Pasadena: Califnia Institute of Technology, 2011.
[4] CHANG L, DUARTE M M, SUCAR L E et al. A Bayesian approach for object classification based on clusters of SIFT local features[J]. Expert Systems with Applications An International Journal, 39, 1679-1686(2012).
[5] [5] KATAOKA H, HASHIMOTO K, IWATA K, et al. Extended cooccurrence HOG with dense trajecties f finegrained activity recognition[C]Proceedings of the Asian Conference on Computer Vision (ACCV). Heidelberg: Springer, Cham, 2014: 336349.
[6] [6] [6]连和谬基于SVM多分类的超分辨图像细粒度分类方法安阳工学院学报2020192410.19329/j.cnki.1673-2928.2020.02.013LIANHemiuSuper-resolution image fine-grained classification based on SVMJournal of Anyang Institute of Technology2020192410.19329/j.cnki.1673-2928.2020.02.013
[7] [7] WANG D, SHEN Z, JIE S, et al. Multiple granularity des f finegrained categization [C]Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). USA: IEEE 2015: 23992406.
[8] [8] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models f finegrained visual recognition [C]Proceedings of the IEEE international conference on computer vision. USA: IEEE, 2015: 14491457.
[9] DONAHUE J, JIA Y, VINYALS O et al. DeCAF: a deep convolutional activation feature for generic visual recognition[J]. Proceedings of Machine Learning Research, 32, 647-655(2014).
[10] [10] [10]张潜, 桑军, 吴伟群, 等基于Xception的细粒度图像分类重庆大学学报(自然科学版)20184158591ZHANGQian, SANGJun, WUWeiqun, et alFine-grained image classification based on XceptionJournal of Chongqing University(Natural Science Edition)20184158591
[11] BO Z, FENG J, XIAO W et al. A survey on deep learning-based fine-grained object classification and semantic segmentation[J]. International Journal of Automation and Computing, 14, 119-135(2017).
[12] [12] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C] Proceedings of the IEEE conference on computer vision pattern recognition. USA: IEEE, 2015: 19.
[13] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 1, 00-00(2009).
[14] [14] XIAO T, XU Y, YANG K, et al. The application of twolevel attention models in deep convolutional neural wk f finegrained image classification [C]Proceedings of the 2015 IEEE Conference on Computer Vision Pattern Recognition (CVPR). USA: IEEE, 2015: 842850.
[15] [15] ZHANG N, DONAHUE J, GIRSHICK R, et al. Partbased RCNNs f finegrained categy detection[C]. Proceedings of the European Conference on Computer Vision. Heidelberg: Springer, Cham, 2014: 834849.
[16] [16] [16]王婷, 王新, 郑承宇, 等一种基于注意力机制的细粒度图像分类方法云南民族大学学报(自然科学版)2021306581586WANGTing, WANGXin, ZHENGChengyu, et alA fine-grained image classification method based on attention mechanismJournal of Yunnan Minzu University (Natural Science Edition)2021306581586
[17] [17] SIMON M, RODNER E. Neural activation constellations: unsupervised part model discovery with convolutional wks [C]. Proceedings of the IEEE international conference on computer vision. USA: IEEE, 2015: 11431151.
[18] [18] JEGOU H, DOUZE M, SCH C, et al. Aggregating local des into a compact image representation [C]Proceedings of the Computer Vision Pattern Recognition (CVPR). USA: IEEE, 2010: 33043311.
[19] [19] [19]邓祥, 俞璐深度聚类算法综述通信技术20215481807181410.3969/j.issn.1002-0802.2021.08.001DENGXiang, YULuReview of deep clustering algorithmsCommunications Technology20215481807181410.3969/j.issn.1002-0802.2021.08.001
[20] [20] GOLDBERG Y, LEVY O. wd2vec Explained: deriving Mikolov et al.''s negativesampling wdembedding method [JOL]. (20140215)[20220509]. https:arxiv.gabs1402.3722.
[21] [21] GROVER A, LESKOVEC J. node2vec: scalable feature learning f wks [C]Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery data mining. [S. l]: ACM Digital Library, 2016: 855864.
[22] [22] CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering f unsupervised learning of visual features [C]Proceedings of the European conference on computer vision (ECCV). Heidelberg: Springer, Cham, 2018: 132149.
[23] [23] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Image classification with deep convolutional neuralwks[C]Advances in neural infmation processing systems. Lake Tahoe, NV, USA: Harrahs Harveys, 2012: 10971105.
[24] [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional wks f largescale image recognition [JOL]. (20140904) [20220509]. https:arxiv.gabs1409.1556.
[25] HARTIGAN J A, WONG M A. Algorithm AS 136: a k-means clustering algorithm[J]. Journal of the Royal Statistical Society, 28, 100-108(1979).
[26] MAUGIS C, MARTIN-MAGNIETTE C. Variable selection for clustering with gaussian mixture models[J]. Biometrics, 65, 701-709(2010).
Get Citation
Copy Citation Text
Hongqiang LU, Junlin Wang, Ya’nan WANG, Xuezhi AN, Xinchao NING, kun QIAN. Fine-grained target classification method based on deep clustering[J]. Journal of Applied Optics, 2022, 43(4): 669
Category: OE INFORMATION ACQUISITION AND PROCESSING
Received: May. 20, 2022
Accepted: --
Published Online: Aug. 10, 2022
The Author Email: Junlin Wang (aogetuya@qq.com)