Chinese Journal of Lasers, Volume. 43, Issue 8, 800001(2016)
Ultrafast Laser Fabricated Bio-Inspired Surfaces with Special Wettability
[1] [1] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[2] [2] Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
[3] [3] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.
[4] [4] Feng L, Zhang Y N, Xi J M, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119.
[5] [5] Yang S, Ju J, Qiu Y C, et al. Peanut leaf inspired multifunctional surfaces[J]. Small, 2014, 10(2): 294-299.
[6] [6] Wu D, Wang J N, Wu S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Advanced Functional Materials, 2011, 21(15): 2927-2932.
[7] [7] Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182.
[8] [8] Drelich J, Chibowski E, Meng D D, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21): 9804-9828.
[9] [9] Yao X, Song Y L, Jiang L. Applications of bio-inspired special wettable surfaces[J]. Advanced Materials, 2011, 23(6): 719-734.
[10] [10] Liu K S, Jiang L. Bio-inspired self-cleaning surfaces[J]. Annual Review of Materials Research, 2012, 42(1): 231-263.
[11] [11] Wang S T, Liu K S, Yao X, et al. Bioinspired Surfaces with Superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293.
[12] [12] Liu K S, Jiang L. Metallic surfaces with special wettability[J]. Nanoscale, 2011, 3(3): 825-838.
[13] [13] Zhang P, Lv F Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications[J]. Energy, 2015, 82: 1068-1087.
[14] [14] Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces[J]. Langmuir, 2012, 28(14): 6067-6075.
[15] [15] Chen F, Zhang D S, Yang Q, et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 6777-6792.
[16] [16] Razi S, Mollabashi M, Madanipour K. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control[J]. European Physical Journal Plus, 2015, 130(12) :1-12.
[17] [17] Zhang D S, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4905-4912.
[18] [18] Yong J L, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5499-5507.
[19] [19] Long J Y, Zhong M L, Zhang H J, et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 2015, 441: 1-9.
[20] [20] Long J Y, Fan P X, Zhong M L, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 2014, 311: 461-467.
[21] [21] Long J Y, Fan P X, Gong D W, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9858-9865.
[22] [22] Gong D W, Long J Y, Fan P X, et al. Thermal stability of micro-nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template[J]. Applied Surface Science, 2015, 331: 437-443.
[23] [23] Long J Y, Zhong M L, Fan P X, et al. Wettability conversion of ultrafast laser structured copper surface[J]. Journal of Laser Applications, 2015, 27(S2):S29107.
[24] [24] Long Jiangyou, Wu Yingchao, Gong Dingwei, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese J Lasers, 2015, 42(7): 0706002.
[25] [25] Lin Cheng, Zhong Minlin, Fan Peixun, et al. Picosecond laser fabrication of large-area surface micro-nano lotus-leaf structures and replication of superhydrophobic silicone rubber surfaces[J]. Chinese J Lasers, 2014, 41(9): 0903007.
[26] [26] Long J Y, Pan L, Fan P X, et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro/nanostructures produced by a femtosecond laser[J]. Langmuir, 2016, 32(4): 1065-1072.
[27] [27] Vogler E A. Water and the acute biological response to surfaces[J]. Journal of Biomaterials Science-Polymer Edition, 1999, 10(10): 1015-1045.
[28] [28] Zhao Z G. Applied Colloid and Interface Science[M]. Beijing: Chemical Industry Press, 2008: 114-116.
[29] [29] Gao X F, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213.
[30] [30] Liu K S, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chemical Society Reviews, 2010, 39(8): 3240-3255.
[31] [31] Cai Y, Lin L, Xue Z X, et al. Filefish-inspired surface design for anisotropic underwater oleophobicity[J]. Advanced Functional Materials, 2014, 24(6): 809-816.
[32] [32] Eral H B, T Mannetje D J C M, Oh J M. Contact angle hysteresis: A review of fundamentals and applications[J]. Colloid and Polymer Science, 2013, 291(2): 247-260.
[33] [33] Wang S T, Jiang L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424.
[34] [34] Ahmmed K M T, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219-1253.
[35] [35] Barberoglou M, Zorba V, Stratakis E, et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10): 5425-5429.
[36] [36] Samarasekera C, Tan B, Venkatakrishnan K. Flower-like na2o nanotip synthesis via femtosecond laser ablation of glass[J]. Nanoscale Research Letters, 2012, 7: 404.
[37] [37] Liang F, Lehr J, Danielczak L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining[J]. International Journal of Molecular Sciences, 2014, 15(8): 13681-13696.
[38] [38] Li X H, Yuan C H, Yang H D, et al. Morphology and composition on Al surface irradiated by femtosecond laser pulses[J]. Applied Surface Science, 2010, 256(13): 4344-4349.
[39] [39] Wang Z K, Zheng H Y, Lim C P, et al. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation[J]. Applied Physics Letters, 2009, 95(11): 111110.
[40] [40] Younkin R, Carey J E, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626-2629.
[41] [41] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675.
[42] [42] Yong J L, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communications, 2015, 51(48): 9813-9816.
[43] [43] Vorobyev A Y, Guo C L. Water sprints uphill on glass[J]. Journal of Applied Physics, 2010, 108(12): 123512.
[44] [44] Vorobyev A Y, Guo C L. Making human enamel and dentin surfaces superwetting for enhanced adhesion[J]. Applied Physics Letters, 2011, 99(19): 193703.
[45] [45] Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.
[46] [46] van den Brand J, van Gils S, Beentjes P C J, et al. Ageing of aluminium oxide surfaces and their subsequent reactivity towards bonding with organic functional groups[J]. Applied Surface Science, 2004, 235(4): 465-474.
[47] [47] Sondag A H M, Raas M C, van Velzen P N T. Contamination of aluminium oxide surfaces in ambient air investigated by FTIR MSR and TOF SIMS - chemisorption of aliphatic carboxylic acids[J]. Chemical Physics Letters, 1989, 155(4-5): 503-510.
[48] [48] Strohmeier B R. Improving the wettability of aluminum foil with oxygen plasma treatments[J]. Journal of Adhesion Science and Technology, 1992, 6(6): 703-718.
[49] [49] Takeda S, Fukawa M, Hayashi Y, et al. Surface OH group governing adsorption properties of metal oxide films[J]. Thin Solid Films, 1999, 339(1-2): 220-224.
[50] [50] Gentleman M M, Ruud J A. Role of hydroxyls in oxide wettability[J]. Langmuir, 2010, 26(3): 1408-1411.
[51] [51] Wang G Y, Zhang T Y. Oxygen adsorption induced superhydrophilic-to-superhydrophobic transition on hierarchical nanostructured CuO surface[J]. Journal of Colloid and Interface Science, 2012, 377: 438-441.
[52] [52] Geng W Y, Hu A M, Li M. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array[J]. Applied Surface Science, 2012, 263: 821-824.
[53] [53] Chang F M, Cheng S L, Hong S J, et al. Superhydrophilicity to superhydrophobicity transition of CuO nanowire films[J]. Applied Physics Letters, 2010, 96(11): 114101.
[54] [54] Li Z F, Zheng Y J, Zhao J, et al. Wettability of atmospheric plasma sprayed Fe, Ni, Cr and their mixture coatings[J]. Journal of Thermal Spray Technology, 2012, 21(2): 255-262.
[55] [55] Nunes B, Serro A P, Oliveira V, et al. Ageing effects on the wettability behavior of laser textured silicon[J]. Applied Surface Science, 2011, 257(7): 2604-2609.
[56] [56] Liu T Y, Kim C J. Turning a surface super-repellent even to completely wetting liquids[J]. Science, 2014, 346(6213): 1096-1100.
[57] [57] Cao L L, Hu H H, Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials[J]. Langmuir, 2007, 23(8): 4310-4314.
[58] [58] Cardoso M R, Tribuzi V, Balogh D T, et al. Laser microstructuring for fabricating superhydrophobic polymeric surfaces[J]. Applied Surface Science, 2011, 257(8): 3281-3284.
[59] [59] Yoon T O, Shin H J, Jeoung S C, et al. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express, 2008, 16(17): 12715-12725.
[60] [60] De Marco C, Eaton S M, Suriano R, et al. Surface Properties of femtosecond laser ablated PMMA[J]. ACS Applied Materials & Interfaces, 2010, 2(8): 2377-2384.
[61] [61] Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049-4054.
[62] [62] Saltuganov P N, Ionin A A, Kudryashov S I, et al. Fabrication of superhydrophobic coating on stainless steel surface by femtosecond laser texturing and chemisorption of an hydrophobic agent[J]. Journal of Russian Laser Research, 2015, 36(1): 81-85.
[63] [63] Boinovich L B, Domantovskiy A G, Emelyanenko A M, et al. Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2080-2085.
[64] [64] Fadeeva E, Truong V K, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.
[65] [65] Rukosuyev M V, Lee J, Cho S J, et al. One-step fabrication of superhydrophobic hierarchical structures by femtosecond laser ablation[J]. Applied Surface Science, 2014, 313: 411-417.
[66] [66] Jagdheesh R. Fabrication of a superhydrophobic Al2O3 surface using picosecond laser pulses[J]. Langmuir, 2014, 30(40): 12067-12073.
[67] [67] Tao H Y, Song X W, Hao Z Q, et al. One-step formation of multifunctional nano- and microscale structures on metal surface by femtosecond laser[J]. Chinese Optics Letters, 2015, 13(6): 061402.
[68] [68] Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.
[69] [69] Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256(1): 61-66.
[70] [70] Moradi S, Kamal S, Englezos P, et al. Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity[J]. Nanotechnology, 2013, 24(41): 415302.
[71] [71] Ahsan M S, Dewanda F, Lee M S, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 784-789.
[72] [72] Xi Jinming. Fabrication and study of superhydrophobic and superamphiphobic materials[D]. Beijing: Graduate School of Chinese Academy of Sciences (National Center for Nanoscience and Technology), 2008.
[73] [73] Yan B, Tao J G, Pang C, et al. Reversible UV-light-induced ultrahydrophobic-to-ultrahydrophilic transition in an α-Fe2O3 nanoflakes film[J]. Langmuir, 2008, 24(19): 10569-10571.
[74] [74] Wang S T, Feng X J, Yao J N, et al. Controlling wettability and photochromism in a dual-responsive tungsten oxide film[J]. Angewandte Chemie-International Edition, 2006, 45(8): 1264-1267.
[75] [75] Liu H, Feng L, Zhai J, et al. Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity[J]. Langmuir, 2004, 20(14): 5659-5661.
[76] [76] Sun R D, Nakajima A, Fujishima A, et al. Photoinduced surface wettability conversion of ZnO and TiO2 thin films[J]. Journal of Physical Chemistry B, 2001, 105(10): 1984-1990.
[77] [77] Frysali M A, Papoutsakis L, Kenanakis G, et al. Functional surfaces with photocatalytic behavior and reversible wettability: ZnO coating on silicon spikes[J]. The Journal of Physical Chemistry C, 2015, 119(45): 25401-25407.
[78] [78] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
[79] [79] Yong J L, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. Journal of Physical Chemistry C, 2013, 117(47): 24907-24912.
[80] [80] Zhang D S, Chen F, Yang Q, et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser[J]. Soft Matter, 2011, 7(18): 8337-8342.
[81] [81] Chen F, Zhang D S, Yang Q, et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 2011, 27(1): 359-365.
[82] [82] Bohn H F, Federle W. Insect aquaplaning: nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): 14138-14143.
[83] [83] Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 2008, 20(15): 2842-2858.
[84] [84] Yong J L, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 2014, 288: 579-583.
[85] [85] Wu S Z, Wu D, Yao J, et al. One-step preparation of regular micropearl arrays for two-direction controllable anisortropic wetting[J]. Langmuir, 2010, 26(14): 12012-12016.
[86] [86] Zuhlke C A, Anderson T P, Li P B, et al. Superhydrophobic metallic surfaces functionalized via femtosecond laser surface processing for long term air film retention when submerged in liquid[C]. SPIE, 2015: 93511D.
[87] [87] Yong J L, Chen F, Yang Q, et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication[J]. Journal of Materials Chemistry A, 2014, 2(23): 8790-8795.
[88] [88] Nayak B K, Caffrey P O, Speck C R, et al. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Applied Surface Science, 2013, 266: 27-32.
[89] [89] Jiang T, Koch J, Unger C, et al. Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces[J]. Applied Physics A, 2012, 108(4): 863-869.
[90] [90] Peng P P, Ke Q P, Zhou G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395: 326-328.
[91] [91] Fadeeva E, Truong V K, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.
[92] [92] Truong V K, Webb H K, Fadeeva E, et al. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J]. Biofouling, 2012, 28(6): 539-550.
[93] [93] Cunha A, Elie A M, Plawinski L, et al. Femtosecond laser surface texturing of titanium femtosecond laser surface texturing of titanium as a method to reduce the adhesion of staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 2016, 360: 485-493.
[94] [94] George Sajan D, Ladiwala Uma, Thomas John, et al. Deposition and alignment of cells on laser-patterned quartz[J]. Applied Surface Science, 2014, 305: 375-381.
[95] [95] Zhao Y, Luo Y T, Zhu J, et al. Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance[J]. ACS Applied Materials & Interfaces, 2015, 7(22): 11719-11723.
[96] [96] Miljkovic N, Wang E N. Condensation heat transfer on superhydrophobic surfaces[J]. MRS Bulletin, 2013, 38(5): 397-406.
[97] [97] Li C, Wang Z K, Wang P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088.
[98] [98] Kruse C M, Anderson T, WilsonC, et al. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 82: 109-116.
[99] [99] Anderson T P, Wilson C, Zuhlke C A, et al. Enhancing vapor generation at a liquid-solid interface using micro/nanoscale surface structures fabricated by femtosecond laser surface processing[C]. SPIE, 2015: 93510D.
[100] [100] Proll J, Schmitz B, Niemoller A, et al. Femtosecond laser patterning of lithium-ion battery separator materials: Impact on liquid electrolyte wetting and cell performance[C]. SPIE, 2015: 93511F.
[101] [101] Prll J, Kim H, Pique A, et al. Laser-printing and femtosecond-laser structuring of LiMn2O4 composite cathodes for li-ion microbatteries[J]. Journal of Power Sources, 2014, 255: 116-124.
[102] [102] Dorrer C, Ruehe J. Some thoughts on superhydrophobic wetting[J]. Soft Matter, 2009, 5(1): 51-61.
Get Citation
Copy Citation Text
Long Jiangyou, Fan Peixun, Gong Dingwei, Zhang Hongjun, Zhong Minlin. Ultrafast Laser Fabricated Bio-Inspired Surfaces with Special Wettability[J]. Chinese Journal of Lasers, 2016, 43(8): 800001
Category: reviews
Received: Mar. 10, 2016
Accepted: --
Published Online: Aug. 30, 2016
The Author Email: Jiangyou Long (longjy12@mails.tsinghua.edu.cn)