Chinese Journal of Lasers, Volume. 51, Issue 8, 0805003(2024)
Analysis of Applicable Scope of Numerical Simulation Method for Thermal Blooming of High-Energy Laser
[1] Van Zandt N R, Fiorino S T, Keefer K J. Enhanced, fast-running scaling law model of thermal blooming and turbulence effects on high energy laser propagation[J]. Optics Express, 21, 14789-14798(2013).
[2] Banakh V A, Falits A V. Efficiency of combined beam focusing under thermal blooming[J]. Atmospheric and Oceanic Optics, 27, 211-217(2014).
[3] Sprangle P, Hafizi B, Ting A et al. High-power lasers for directed-energy applications[J]. Applied Optics, 54, F201-F209(2015).
[4] Li X Q, Ji X L. Theoretical research progress on the influence of atmospheric turbulence and thermal blooming on characteristics and beam quality of laser array beams propagating in the atmosphere[J]. High Power Laser and Particle Beams, 35, 041007(2023).
[5] Xu M M, Li X Q, Tang R et al. Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams[J]. Acta Physica Sinica, 72, 164202(2023).
[6] Li X Q, Ji X L. Effect of thermal blooming on the beam quality of truncated laser beams[J]. Optik, 127, 8350-8356(2016).
[7] Wang L, Lin W B. The effect of wind directions on the thermal blooming of a laser beam propagating in the air[J]. Journal of Russian Laser Research, 37, 407-410(2016).
[8] Deng L, Li X Q, Mu Y et al. Beam quality optimization of elliptical laser under wind-dominated thermal blooming[J]. Chinese Journal of Lasers, 49, 0405001(2022).
[9] Wang L, Lin W B. The effect of the wind speed on the thermal blooming of a laser beam propagating in the rain[J]. Journal of Russian Laser Research, 38, 455-458(2017).
[10] Yu L, Hu B B, Zhang Y X. Intensity of vortex modes carried by Lommel beam in weak-to-strong non-Kolmogorov turbulence[J]. Optics Express, 25, 19538-19547(2017).
[11] Akers B F, Reeger J A. Numerical simulation of thermal blooming with laser-induced convection[J]. Journal of Electromagnetic Waves and Applications, 33, 96-106(2019).
[12] Kanev F Y, Makenova N A, Lukin V P et al. Adaptive correction of thermal distortions of multichannel laser radiation[J]. Atmospheric and Oceanic Optics, 31, 238-242(2018).
[13] Ding Z L, Li X Q, Cao J Y et al. Thermal blooming effect of Hermite-Gaussian beams propagating through the atmosphere[J]. Journal of the Optical Society of America A, 36, 1152-1160(2019).
[14] Wu S Y, Luo X, Li X Y. Adaptive optics for reduction of thermal blooming effects by the phase compensation[J]. Journal of Russian Laser Research, 41, 413-423(2020).
[15] Ahn K, Lee S H, Park I K et al. Numerical simulation of high-energy laser propagation through the atmosphere and phase correction based on adaptive optics[J]. Journal of the Korean Physical Society, 79, 918-929(2021).
[16] Lu L, Wang Z Q, Zhang P F et al. Thermal blooming induced phase change and its compensation of a Gaussian beam propagation in an absorbing medium[J]. Optics Letters, 46, 4304-4307(2021).
[17] Qiu D, Tian B Y, Ting H et al. Mitigation of thermal blooming by rotating laser beams in the atmosphere[J]. Applied Optics, 60, 8458-8465(2021).
[18] McLean E A, Sica L, Glass A J. Interferometric observation of absorption induced index change associated with thermal blooming[J]. Applied Physics Letters, 13, 369-371(1968).
[19] Gebhardt F G, Smith D C. Effects of wind on thermal defocusing of CO2 laser radiation[J]. Applied Physics Letters, 14, 52-54(1969).
[20] Smith D. Thermal defocusing of CO2 laser radiation in gases[J]. IEEE Journal of Quantum Electronics, 5, 600-607(1969).
[21] Chan C H. Effective absorption for thermal blooming due to aerosols[J]. Applied Physics Letters, 26, 628-630(1975).
[22] Fleck J A, Jr, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 10, 129-160(1976).
[23] Gebhardt F G. High power laser propagation[J]. Applied Optics, 15, 1479-1493(1976).
[24] Primmerman C A, Fouche D G. Thermal-blooming compensation: experimental observations using a deformable-mirror system[J]. Applied Optics, 15, 990-995(1976).
[25] Smith D C. High-power laser propagation: thermal blooming[J]. Proceedings of the IEEE, 65, 1679-1714(1977).
[26] Gebhardt F G. Twenty-five years of thermal blooming: an overview[J]. Proceedings of SPIE, 1221, 2-25(1990).
[27] Vorob'ev V V. Thermal blooming of laser beams in the atmosphere[J]. Progress in Quantum Electronics, 15, 1-152(1991).
[28] Mahdieh M H, Lotfi B. Two-dimensional-simulation of thermal blooming effects in ring pattern laser beams[J]. Optical Engineering, 44, 096001(2005).
[29] Yao Y Q. Study on thermal halo effect of intense laser propagation in the atmosphere[D](2009).
[30] Ji X L, Eyyuboğlu H T, Ji G M et al. Propagation of an Airy beam through the atmosphere[J]. Optics Express, 21, 2154-2164(2013).
[31] Shlenov S A, Vasiltsov V V, Kandidov V P. Energy parameters of CO2 laser radiation focused in a turbulent atmosphere under wind-dominated thermal blooming[J]. Atmospheric and Oceanic Optics, 29, 324-330(2016).
[32] Wu S Y. Numerical simulation and experimental study on thermal blooming effect and adaptive optical correction of laser propagation in atmosphere[D](2020).
[33] Zhao L. Thermal halo effect of vortex beam propagation in atmosphere[D](2021).
[34] Wu X Y Z, Xu J, Gong K L et al. Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases[J]. Chinese Physics B, 31, 086105(2022).
[35] Gong P, Xu G C, Zhang S T et al. Research of Fresnel diffraction and finite difference time domain in grating simulation[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 45, 1-5(2022).
[36] Cai B W, Huang W L, Lü B D et al. Numerical simulation of CW steady-state thermal blooming with wind[J]. Acta Optica Sinica, 16, 948-951(1996).
[37] Zhang Q, Hu Q L, Wang H Y et al. High-precision calculation and experiments on the thermal blooming of high-energy lasers[J]. Optics Express, 31, 25900-25914(2023).
[38] Sheng Z, Xie S Q, Pan C Y[M]. Probability and mathematical statistics(2008).
Get Citation
Copy Citation Text
Qi Zhang, Qili Hu, Hongyan Wang, Ming Hu, Xingyu Xu, Jingjing Wu, Lifa Hu. Analysis of Applicable Scope of Numerical Simulation Method for Thermal Blooming of High-Energy Laser[J]. Chinese Journal of Lasers, 2024, 51(8): 0805003
Category: Beam transmission and control
Received: Jul. 4, 2023
Accepted: Sep. 18, 2023
Published Online: Mar. 29, 2024
The Author Email: Lifa Hu (hulifa@jiangnan.edu.cn)
CSTR:32183.14.CJL230991