Acta Photonica Sinica, Volume. 52, Issue 11, 1126001(2023)
Orbiting and Non-axial Spinning Motion of Particle in Tightly Focused Circularly Polarized Vortex Beam
[1] GAO Dongliang, DING Weiqiang, NIETO-VESPERINAS M et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[J]. Light: Science & Applications, 6, e17039(2017).
[2] MOFFITT J R, CHEMLA Y R, SMITH S B et al. Recent advances in optical tweezers[J]. Annual Review of Biochemistry, 77, 205-228(2008).
[3] LEE M P, PADGETT M J. Optical tweezers: a light touch[J]. Journal of Microscopy, 248, 219-222(2012).
[4] SHEN Y, WANG X, XIE Z et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 1-29(2019).
[5] PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 5, 343-348(2011).
[6] POOLER D R, LUBBE A S, CRESPI S et al. Designing light-driven rotary molecular motors[J]. Chemical Science, 12, 14964-14986(2021).
[7] BLIOKH K Y, RODR GUEZ-FORTU O F J, NORI F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).
[8] BIALYNICKI-BIRULA I, BIALYNICKA-BIRULA Z. Canonical separation of angular momentum of light into its orbital and spin parts[J]. Journal of Optics, 13, 064014(2011).
[9] BLIOKH K Y, BEKSHAEV A Y, NORI F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 5, 1-8(2014).
[10] BEKSHAEV A Y, BLIOKH K Y, NORI F. Transverse spin and momentum in two-wave interference[J]. Physical Review X, 5, 011039(2015).
[11] BLIOKH K Y, NORI F. Transverse and longitudinal angular momenta of light[J]. Physics Reports, 592, 1-38(2015).
[12] SINGH A K, SAHA S, GUPTA S D et al. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams[J]. Physical Review A, 97, 043823(2018).
[13] HANG Li, FU Jian, YU Xiaochang et al. Generation of a sub-half-wavelength focal spot with purely transverse spin angular momentum[J]. Applied Physics B, 123, 1-5(2017).
[14] NEUGEBAUER M, BAUER T, AIELLO A et al. Measuring the transverse spin density of light[J]. Physical Review Letters, 114, 063901(2015).
[15] AIELLO A, MARQUARDT C, LEUCHS G. Transverse angular momentum of photons[J]. Physical Review A, 81, 053838(2010).
[16] AIELLO A, BANZER P, NEUGEBAUER M et al. From transverse angular momentum to photonic wheels[J]. Nature Photonics, 9, 789-795(2015).
[17] ZHU W, SHVEDOV V, SHE W et al. Transverse spin angular momentum of tightly focused full Poincaré beams[J]. Optics Express, 23, 34029-34041(2015).
[18] RUI Guanghao, LI Ying, ZHOU Sichao et al. Optically induced rotation of Rayleigh particles by arbitrary photonic spin[J]. Photonics Research, 7, 69-79(2019).
[19] LI Manman, YAN Shaohui, YAO Baoli et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 24, 20604-20612(2016).
[20] YU Panpan, ZHAO Qian, HU Xinyao et al. Orbit-induced localized spin angular momentum in the tight focusing of linearly polarized vortex beams[J]. Optics Letters, 43, 5677-5680(2018).
[21] CHEN Jian, WAN Chenhao, KONG Lingjiang et al. Tightly focused optical field with controllable photonic spin orientation[J]. Optics Express, 25, 19517-19528(2017).
[22] CAO Yongyin, ZHU Tongtong, LV Haiyi et al. Spin-controlled orbital motion in tightly focused high-order Laguerre-Gaussian beams[J]. Optics Express, 24, 3377-3384(2016).
[23] RUFFNER D B, GRIER D G. Optical forces and torques in nonuniform beams of light[J]. Physical Review Letters, 108, 173602(2012).
[24] LEHMUSKERO A, LI Y, JOHANSSON P et al. Plasmonic particles set into fast orbital motion by an optical vortex beam[J]. Optics Express, 22, 4349-4356(2014).
[25] CURTIS J E, GRIER D G. Structure of optical vortices[J]. Physical Review Letters, 90, 133901(2003).
[26] LI Manman, CAI Yanan, YAN Shaohui et al. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams[J]. Physical Review A, 97, 053842(2018).
[27] YOUNGWORTH K S, BROWN T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).
[28] LEUTENEGGER M, RAO R, LEITGEB R A et al. Fast focus field calculations[J]. Optics Express, 14, 11277-11291(2006).
[29] LI Manman, YAN Shaohui, LIANG Yansheng et al. Transverse spinning of particles in highly focused vector vortex beams[J]. Physical Review A, 95, 053802(2017).
[30] IKETAKI Y, WATANABE T, BOKOR N et al. Investigation of the center intensity of first-and second-order Laguerre-Gaussian beams with linear and circular polarization[J]. Optics Letters, 32, 2357-2359(2007).
[31] FRIESE M E J, NIEMINEN T A, HECKENBERG N R et al. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 394, 348-350(1998).
[32] SIMPSON N B, DHOLAKIA K, ALLEN L et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 22, 52-54(1997).
Get Citation
Copy Citation Text
Yanan CAI, Shaohui YAN, Yanan ZHANG, Mulong LIU, Rui ZHANG, Wenyi REN, Baoli YAO. Orbiting and Non-axial Spinning Motion of Particle in Tightly Focused Circularly Polarized Vortex Beam[J]. Acta Photonica Sinica, 2023, 52(11): 1126001
Category:
Received: Apr. 13, 2023
Accepted: May. 31, 2023
Published Online: Dec. 22, 2023
The Author Email: Baoli YAO (yaobl@opt.ac.cn)