Frontiers of Optoelectronics, Volume. 13, Issue 2, 139(2020)
Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3-xP nanocrystals
[1] [1] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nature Photonics, 2013, 7(11): 842–845
[2] [2] Haus H A. Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1173–1185
[3] [3] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, Der Au J A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435–453
[4] [4] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30 (24): 1705963
[5] [5] Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
[6] [6] Bao Q, Zhang H,Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
[7] [7] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L. Exciton dynamics in suspended monolayer and fewlayer MoS2 2D crystals. ACS Nano, 2013, 7(2): 1072–1080
[8] [8] Woodward R I, Kelleher E J. 2D saturable absorbers for fibre lasers. Applied Sciences, 2015, 5(4): 1440–1456
[9] [9] artinez A, Yamashita S. 10 GHz fundamental mode fiber laser using a graphene saturable absorber. Applied Physics Letters, 2012, 101(4): 041118
[10] [10] Liu W, Pang L, Han H, Liu M, Lei M, Fang S, Teng H, Wei Z. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers. Optics Express, 2017, 25(3): 2950–2959
[11] [11] Jin X, Hu G, Zhang M, Hu Y, Albrow-Owen T, Howe R C T, Wu T C, Wu Q, Zheng Z, Hasan T. 102 fs pulse generation from a longterm stable, inkjet-printed black phosphorus-mode-locked fiber laser. Optics Express, 2018, 26(10): 12506–12513
[12] [12] Jiang T, Yin K, Wang C, You J, Ouyang H, Miao R, Zhang C, Wei K, Li H, Chen H, Zhang R, Zheng X, Xu Z, Cheng X, Zhang H. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photonics Research, 2020, 8(1): 78–90
[13] [13] Li P, Chen Y, Yang T, Wang Z, Lin H, Xu Y, Li L, Mu H, Shivananju B N, Zhang Y, Zhang Q, Pan A, Li S, Tang D, Jia B, Zhang H, Bao Q. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Applied Materials & Interfaces, 2017, 9(14): 12759–12765
[14] [14] Ge Y, Zhu Z, Xu Y, Chen Y, Chen S, Liang Z, Song Y, Zou Y, Zeng H, Xu S, Zhang H, Fan D. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Advanced Optical Materials, 2018, 6(4): 1701166
[15] [15] Guo B,Wang S H,Wu Z X,Wang Z X,Wang D H, Huang H, Zhang F, Ge Y Q, Zhang H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Optics Express, 2018, 26 (18): 22750–22760
[16] [16] Kou L Z, Tan X, Ma Y D, Tahini H, Zhou L J, Sun Z Q, Du A J, Chen C F, Smith S C. Tetragonal bismuth bilayer: a stable and robust quantum spin hall insulator. 2D Materials, 2015, 4: 045010
[17] [17] Comin A, Manna L. New materials for tunable plasmonic colloidal nanocrystals. Chemical Society Reviews, 2014, 43(11): 3957–3975
[18] [18] Liu X, Swihart M T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews, 2014, 43(11): 3908– 3920
[19] [19] Liu Z, Mu H, Xiao S, Wang R, Wang Z, Wang W, Wang Y, Zhu X, Lu K, Zhang H, Lee S T, Bao Q, Ma W. Pulsed lasers employing solution-processed plasmonic Cu3 – xP colloidal nanocrystals. Advanced Materials, 2016, 28(18): 3535–3542
[20] [20] Scotognella F, Della Valle G, Srimath Kandada A R, Dorfs D, Zavelani-Rossi M, Conforti M, Miszta K, Comin A, Korobchevskaya K, Lanzani G, Manna L, Tassone F. Plasmon dynamics in colloidal Cu2 – xSe nanocrystals. Nano Letters, 2011, 11(11): 4711– 4717
[21] [21] Kriegel I, Jiang C, Rodríguez-Fernández J, Schaller R D, Talapin D V, da Como E, Feldmann J. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. Journal of the American Chemical Society, 2012, 134(3): 1583–1590
[22] [22] Luther J M, Jain P K, Ewers T, Alivisatos A P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Materials, 2011, 10(5): 361–366
[23] [23] Hamanaka Y, Hirose T, Yamada K, Kuzuya T. Plasmonic enhancement of third-order nonlinear optical susceptibilities in self-doped Cu2 – xS nanoparticles. Optical Materials Express, 2016, 6(12): 3838–3848
[24] [24] Liu X, Guo Q, Qiu J. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Advanced Materials, 2017, 29(14): 1605886
[25] [25] Henkes A E, Schaak R E. Trioctylphosphine: a general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chemistry of Materials, 2007, 19(17): 4234–4242
[26] [26] Hsu S W, Ngo C, Tao A R. Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. Nano Letters, 2014, 14(5): 2372–2380
[27] [27] Popa D, Sun Z, Hasan T, Torrisi F, Wang F, Ferrari A C. Graphene Q-switched, tunable fiber laser. Applied Physics Letters, 2011, 98 (7): 073106
Get Citation
Copy Citation Text
Haoran MU, Zeke LIU, Xiaozhi BAO, Zhichen WAN, Guanyu LIU, Xiangping LI, Huaiyu SHAO, Guichuan XING, Babar SHABBIR, Lei LI, Tian SUN, Shaojuan LI, Wanli MA, Qiaoliang BAO. Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3-xP nanocrystals[J]. Frontiers of Optoelectronics, 2020, 13(2): 139
Category: RESEARCH ARTICLE
Received: Feb. 27, 2020
Accepted: Jun. 5, 2020
Published Online: Nov. 25, 2020
The Author Email: Guanyu LIU (liuguanyu@jnu.edu.cn)