Laser Technology, Volume. 47, Issue 6, 742(2023)

Research progress of narrow-linewidth mid-infrared laser

L Guorui1, BIAN Jintian1、*, WENG Jiaqi1, KONG Hui1, XU Haiping1, GUO Lei1,2, and WANG Rongqing1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(51)

    [1] [1] FAN J X. Status quo and trend of infrared system and technologies for America’s ballistic missile defense system[J]. Infrared and Laser Engineering, 2006, 35(5): 536-540(in Chinese).

    [2] [2] MOULTON P, DERGACHEV A, ISYANOVA Y, et al. Recent advances in solid state lasers and nonlinear optics for remote sensing[C]// Conference on Lidar Remote Sensing for Industry and Environment Monitoring Ⅲ. Bellingham,USA: International Society for Optical Engineering, 2003: 193-202.

    [3] [3] GUO B J, WANG Y, PENG C, et al. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Optics Express, 2004, 12(1): 208-219.

    [4] [4] VAN HERPEN M, TE LINTEL HEKKERT S, BISSON S E, et al. Development of a powerful continuously tunable mid-infrared CW PPLN OPO for trace gas detection[C]// ALT’01 International Conference on Advanced Laser Technologies. Bellingham, USA:International Society for Optical Engineering, 2002: 16-21.

    [5] [5] VAINIO M, SILTANEN M, PELTOLA J, et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy[J]. Applied Optics, 2011, 50(4): A1-A10.

    [6] [6] RICHTER D, FRIED A, WERT B P, et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Applied Physics,2002, B75(2/3):281-288.

    [7] [7] KRZEMPEK K, JAHJAH M, LEWICKI R, et al. CW DFB RT diode laser based sensor for trace-gas detection of ethane using novel compact multipass gas absorption cell[J]. Applied Physics, 2013, B112(4):461-465.

    [8] [8] ELVIN R, HOTH G W, WRIGHT M, et al. Cold-atom clock based on a diffractive optic[J]. Optics Express, 2019, 27(26): 38359-38366.

    [9] [9] REN T, WU C, YU Y, et al. Development progress of 3-5 μm mid-infrared lasers: OPO, solid-state and fiber laser[J]. Applied Sciences, 2021, 11(23): 11451.

    [10] [10] TURNER E J, McDANIEL S A, TABIRYAN N, et al. Rapidly tunable HIP treated Cr∶ZnSe narrow-linewidth laser[J]. Optics Express, 2019, 27(9): 12282-12288.

    [11] [11] LI Y Y, JU Y L, DAI T Y, et al. A gain-switched Fe∶ZnSe laser pumped by a pulsed Ho,Pr:LLF laser[J]. Chinese Physics Letters, 2019, 36(4): 24-26.

    [12] [12] WANG Q, LIU C, QI L, et al. Wavelength tunable single-frequency Cr∶ZnSe laser[C]// 2019 International Conference on Optical Instruments and Technology: Advanced Laser Technology and Applications. Bellingham, USA: International Society for Optical Engineering, 2019: 114370H.

    [13] [13] DAI S, FENG G, HONG Z, et al. 4.24 μm mid-infrared laser based on a single Fe2+-doped ZnSe microcrystal[J]. Optics Letters, 2018, 43(3): 411-414.

    [14] [14] EVANS J W, STITES R W, HARRIS T R. Increasing the performance of an Fe∶ZnSe laser using a hot isostatic press[J]. Optical Materials Express, 2017, 7(12): 4296-4303.

    [15] [15] EVANS J W, DOLASINSKO B D, HARRIS T R, et al. Demonstration and power scaling of an Fe∶CdMnTe laser at 5.2 microns[J]. Optical Materials Express, 2017, 7(3): 860-867.

    [16] [16] STITES R W, McDANIEL S A, BARNES J O, et al. Hot isostatic pressing of transition metal ions into chalcogenide laser host crystals[J]. Optical Materials Express, 2016, 6(10): 3339-3353.

    [17] [17] YUAN J H, CHEN Y, YANG H Y, et al. Investigation of a gain-switched Cr2+∶ZnSe laser pumped by an acousto-optic Q-switched Ho∶YAG laser[J]. Quantum Electronics, 2016, 46(9): 772-776.

    [18] [18] LANCASTER A, COOK G, McDANIEL S A, et al. Mid-infrared laser emission from Fe∶ZnSe cladding waveguides[J]. Applied Physics Letters, 2015, 107(3): 885-895.

    [19] [19] MAcDONALD J R, BEECHER S J, LANCASTER A, et al. Ultrabroad mid-infrared tunable Cr∶ZnSe channel waveguide laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(1): 375-379.

    [20] [20] CHEN M, CUI H, LI W, et al. Reparative effect of diffusion process on host defects in Cr2+ doped ZnS/ZnSe[J]. Journal of Alloys and Compounds, 2014, 597(17): 124-128.

    [21] [21] McDANIEL S A, BERRY P A, SCHEPLER K L, et al. Gain-switched operation of ultrafast laser inscribed waveguides in Cr∶ZnSe[C]// Solid State Lasers ⅩⅩⅣ: Technology and Devices. Bellingham, USA: International Society for Optical Engineering, 2015: 93420E.

    [22] [22] SHEN Y, WANG Y, ZHU F, et al. 200 μJ, 13 ns Er∶ZBLAN mid-infrared fiber laser actively Q-switched by an electro-optic modulator[J]. Optics Letters, 2021, 46(5): 1141-1144.

    [23] [23] SHEN Y, WANG Y, LUAN K, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics, 2017, B123(4): 105-111.

    [24] [24] CRAWFORD S, HUDSON D D, JACKSON S D. High-power broadly tunable 3 μm fiber laser for the measurement of optical fiber loss[J]. IEEE Photonics Journal, 2015, 7(3): 1502309.

    [25] [25] BERNIER M, MICHAUD-BELLEAU V, LEVASSEUR S, et al. All-fiber DFB laser operating at 2.8 μm[J]. Optics Letters, 2015, 40(1): 81-84.

    [26] [26] SHEN Y L, HUANG K, ZHU F, et al. Laser diode-pumped watt-level single mode heavily erbium-doped mid-infrared fiber laser[J]. Acta Photonica Sinica, 2014, 43(3): 0314002(in Chinese).

    [27] [27] HUDSON D D, WILLIAMS R J, WITHFORD M J, et al. Single-frequency fiber laser operating at 2.9 μm[J]. Optics Letters, 2013, 38(14): 2388-2390.

    [28] [28] ZHU X Sh, JAIN R. Compact 2 W wavelength-tunable Er∶ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383.

    [29] [29] BAYRAKLI I. Frequency-stabilized narrow-linewidth double-mode quantum cascade laser[J]. Optical and Quantum Electronics, 2022, 54(1): 22 (2022).

    [30] [30] CAPPELLI F, GALLI I, BORRI S, et al. Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-doppler reference[J]. Optics Letters, 2012, 37(23): 4811-4813.

    [31] [31] SHEHZAD A, BROCHARD P, MATTHEY R, et al. 10 kHz linewidth mid-infrared quantum cascade laser by stabilization to an optical delay line[J]. Optics Letters, 2019, 44(14): 3470-3473.

    [32] [32] BORRI S, GALLI I, CAPPELLI F, et al. Direct link of a mid-infrared QCL to a frequency comb by optical injection[J]. Optics Letters, 2012, 37(6): 1011-1013.

    [33] [33] ZHAO B, WANG X, WANG C. Strong optical feedback stabilized quantum cascade laser[J]. ACS Photonics, 2020, 7(5): 1255-1261.

    [34] [34] NIE H K, NING J, ZHANG B T, et al. Recent progress of optical-superlattice-based mid-infrared optical parametric oscillators[J]. Chinese Journal of Lasers, 2021, 48(5): 0501008 (in Chinese).

    [35] [35] WANG X C, WANG Y H, ZHENG H, et al. Wide-tunable mid infrared intra-cavity optical parametric oscillator based on multi-period MgO∶PPLN[J]. Current Optics and Photonics, 2021, 5(1): 59-65.

    [36] [36] RICCIARDI I, MOSCA S, PARISI M, et al. Sub-kHz-linewidth mid-infrared optical parametric oscillator[C]// Conference on Lasers and Electro-Optics. New York, USA: IEEE, 2014: STh1N.3.

    [37] [37] FENG J, CHENG X, LI X, et al. Highly efficient mid-infrared generation from low-power single-frequency fiber laser using phase-matched intracavity difference frequency mixing[J]. Applied Sciences-Basel, 2020, 10(21): 7454-7461.

    [38] [38] ZHAO J, CHENG P, XU F, et al. Watt-level continuous-wave single-frequency mid-infrared optical parametric oscillator based on MgO∶PPLN at 3.68 μm[J]. Applied Sciences-Basel, 2018, 8(8): 1345-1352.

    [39] [39] XING Y L, WANG L, HU Sh W, et al. Cavity-linewidth narrowing of 3 μm low threshold MgO∶PPLN-OPO by volume Bragg grating[J]. Chinese Journal of Lasers, 2017, 44(1): 0101006 (in Chinese).

    [40] [40] XING T, WANG L, HU S, et al. Widely tunable and narrow-bandwidth pulsed mid-IR PPMgLN-OPO by self-seeding dual etalon-coupled cavities[J]. Optics Express, 2017, 25(25): 31810-31815.

    [41] [41] JIAO Z, GUO J, HE G, et al. Narrowband intracavity MgO∶PPLN optical parametric oscillator near degeneracy with a volume Bragg grating[J]. Optics and Laser Technology, 2014, 56: 230-233.

    [42] [42] ZEIL P, THILMANN N, PASISKEVICIUS V, et al. High-power, single-frequency, continuous-wave optical parametric oscillator employing a variable reflectivity volume Bragg grating[J]. Optics Express, 2014, 22(24): 29907-29913.

    [43] [43] DOLASINSKI B, POWERS P. Narrow bandwidth tunable optical parametric generator[C]// Nonlinear Frequency Generation and Conversion. Bellingham, USA: International Society for Optical Engineering, 2013:8604H.

    [44] [44] RICCIARDI I, DE TOMMASI E, MADDALONI P, et al. A narrow-linewidth optical parametric oscillator for mid-infrared high-resolution spectroscopy[J]. Molecular Physics, 2012, 110(17): 2103-2109.

    [45] [45] JACOBSSON B, CANALIAS C, PASISKEVICIUS V, et al. Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2007, 32(22): 3278-3280.

    [46] [46] PENG Y, WEI X, NIE Z, et al. High-power, narrow-bandwidth mid-infrared PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Express, 2015, 23(24): 30827-30832.

    [47] [47] HE G, GUO J, JIAO Z, et al. High-efficiency near-degenerate PPMgLN optical parametric oscillator with a volume Bragg grating[J]. Optics Letters, 2012, 37(8): 1364-1366.

    [48] [48] LI K, YANG S, WANG X, et al. Frequency chirped intensity modulated mid-infrared light source based on optical parametric oscillation[J]. IEEE Photonics Journal, 2020, 12(1): 1500409.

    [49] [49] ERUSHIN E, NYUSHKOV B, IVANENKO A, et al. Tunable injection-seeded fan-out-PPLN optical parametric oscillator for high-sensitivity gas detection[J]. Laser Physics Letters, 2021, 18(11): 116201-116207.

    [50] [50] BIAN J T, YE Q, SUN X Q. ZnGeP2 optical parametric oscillator 4.3 μm laser with narrow line-width[J]. Journal of National University of Defense Technology, 2018, 40(4):9-14(in Chinese).

    [51] [51] BIAN J T, KONG H, YE Q, et al. Narrow-linewidth BaGa4Se7 optical parametric oscillator[J]. Chinese Optics Letters, 2022, 20(4): 041901.

    Tools

    Get Citation

    Copy Citation Text

    L Guorui, BIAN Jintian, WENG Jiaqi, KONG Hui, XU Haiping, GUO Lei, WANG Rongqing. Research progress of narrow-linewidth mid-infrared laser[J]. Laser Technology, 2023, 47(6): 742

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 14, 2022

    Accepted: --

    Published Online: Dec. 5, 2023

    The Author Email: BIAN Jintian (bianjintian17@nudt.edu.cn)

    DOI:10.7510/jgjs.issn.1001-3806.2023.06.003

    Topics