Acta Optica Sinica, Volume. 43, Issue 23, 2306003(2023)
Design, Fabrication, and Properties of 7×1 Mid-Infrared Fiber Combiner
[1] Lü Z, Shen Y, Zong N et al. 1.53 W all-solid-state nanosecond pulsed mid-infrared laser at 6.45 µm[J]. Optics Letters, 47, 1359-1362(2022).
[2] Scott P. Mid-infrared lasers[J]. Nature Photonics, 4, 576-577(2010).
[3] Cui Y L, Zhou Z Y, Huang W et al. Progress and prospect of mid-infrared fiber laser technology[J]. Acta Optica Sinica, 42, 0900001(2022).
[4] Huang W, Zhou Z Y, Cui Y L et al. 4.5 W 3.1 μm mid-infrared fiber gas laser[J]. Chinese Journal of Lasers, 49, 0101024(2022).
[5] Hu S W, Wang L, Guo Y W et al. High-conversion-efficiency tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.79-μm laser[J]. Optics Letters, 44, 2201-2203(2019).
[6] Yuan J H, Li C, Yao B Q et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho: YAG laser[J]. Optics Express, 24, 6083-6087(2016).
[7] Yao Y, Hoffman A J, Gmachl C F. Mid-infrared quantum cascade lasers[J]. Nature Photonics, 6, 432-439(2012).
[8] Zhao G, Tian J F, Hodges J T et al. Frequency stabilization of a quantum cascade laser by weak resonant feedback from a Fabry–Perot cavity[J]. Optics Letters, 46, 3057-3060(2021).
[9] Coco M G, Aro S C, McDaniel S A et al. Continuous wave Fe2+: ZnSe mid-IR optical fiber lasers[J]. Optics Express, 28, 30263-30274(2020).
[10] Yao C F, Jia Z X, Li Z R et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber[J]. Optica, 5, 1264-1270(2018).
[11] Yue W J, Ding Y C, Wu B et al. High-power mid-infrared picosecond pulse bunch generation through difference frequency generation[J]. Optics Letters, 45, 383-386(2020).
[12] Zhou W J, Lu Q Y, Wu D H et al. High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 µm[J]. Optics Express, 27, 15776-15785(2019).
[13] Gattass R R, Shaw L B, Kung F H et al. Infrared fiber N×1 multimode combiner[J]. IEEE Photonics Journal, 5, 7100905(2013).
[14] Major K J, Shaw L B, Busse L et al. Fiber optic coupled quantum cascade infrared laser system for detection of explosive materials on surfaces[J]. Optics & Laser Technology, 119, 105635(2019).
[15] Annunziato A, Anelli F, du Teilleul P L P et al. Fused optical fiber combiner based on indium fluoride glass: perspectives for mid-IR applications[J]. Optics Express, 30, 44160-44174(2022).
[16] Tian K Z, Hu Y S, Ren H et al. Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation[J]. Acta Physica Sinica, 70, 047801(2021).
[17] Zhang H, Chang Y J, Xu Y T et al. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications[J]. Optics Express, 31, 7659-7670(2023).
[18] Tao G M, Ebendorff-Heidepriem H, Stolyarov A M et al. Infrared fibers[J]. Advances in Optics and Photonics, 7, 379(2015).
[19] Zhang B, Guo W, Yu Y et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation[J]. Journal of the American Ceramic Society, 98, 1389-1392(2015).
[20] Wang X G, Zhao Z M, Wang X S et al. Mid-infrared supercontinuum generation in low-loss single-mode Te-rich chalcogenide fiber[J]. Optical Materials Express, 9, 3487-3493(2019).
[21] You C Y, Dai S X, Zhang P Q et al. Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses[J]. Scientific Reports, 7, 6497(2017).
[22] Qi S S, Li Y B, Huang Z X et al. Flexible chalcogenide glass large-core multimode fibers for hundred-watt-level mid-infrared 2-5 µm laser transmission[J]. Optics Express, 30, 14629-14644(2022).
[23] Hu Y S, Tian K Z, Li T T et al. Mid-infrared nonlinear optical performances of Ge-Sb-S chalcogenide glasses[J]. Optical Materials Express, 11, 695-706(2021).
[24] Ren H, Yu Y, Zhai C C et al. Chalcogenide glass fibers with a rectangular core for polarized mid-infrared supercontinuum generation[J]. Journal of Non-Crystalline Solids, 517, 57-60(2019).
[25] Mi H T, Yang A P, Huang Z X et al. Preparation and properties of Ga2S3-Sb2S3-Ag2S chalcogenide glasses and optical fibers[J]. Acta Physica Sinica, 72, 047101(2023).
[26] Yang Y, Yang Z Y, Lucas P et al. Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 440, 38-42(2016).
[27] Zhang M J, Li L, Li T T et al. Mid-infrared supercontinuum generation in chalcogenide fibers with high laser damage threshold[J]. Optics Express, 27, 29287-29296(2019).
[28] Liu W B. Study on transmission characteristics of single-mode-multimode fiber combiner[D], 15-16(2015).
[29] Birks T A, Li Y W. The shape of fiber tapers[J]. Journal of Lightwave Technology, 10, 432-438(1992).
Get Citation
Copy Citation Text
Zixuan Huang, Hu Wang, Sisheng Qi, Xiaonan Gu, Sensen Li, Anping Yang, Xian Feng, Kangzhen Tian, Zhiyong Yang. Design, Fabrication, and Properties of 7×1 Mid-Infrared Fiber Combiner[J]. Acta Optica Sinica, 2023, 43(23): 2306003
Category: Fiber Optics and Optical Communications
Received: Apr. 4, 2023
Accepted: Sep. 4, 2023
Published Online: Dec. 12, 2023
The Author Email: Tian Kangzhen (kangzhentian@jsnu.edu.cn), Yang Zhiyong (yangzhiyong@jsnu.edu.cn)