Acta Photonica Sinica, Volume. 54, Issue 4, 0414001(2025)
Application of Frequency Stabilization and Frequency Shifting Technology Based on Electro-optic Modulation in Differential Absorption Lidar
[1] QUEISSER M, BURTON M, KAZAHAYA R. Insights into geological processes with CO2 remotesensing-A review of technology and applications[J]. Earth-Science Reviews, 188, 389-426(2019).
[2] ELSE B G T, YACKEL J J, PAPAKYRIAKOU T N. Application of satellite remote sensing techniques for estimating air-sea CO2 fluxes in Hudson Bay, Canada during the ice-free season[J]. Remote Sensing of Environment, 112, 3550-3562(2008).
[3] DASH J, OGUTU B O. Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems[J]. Progress in Physical Geography: Earth and Environment, 40, 322-351(2016).
[4] NASSAR R, SIORIS C E, JONES D B A et al. Satellite observations of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle[J]. Journal of Geophysical Research: Atmospheres, 119, 2654-2673(2014).
[5] LARSSON J, BOOD J, XU C T et al. Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-µm fiber source[J]. Optics Express, 27, 17348-17358(2019).
[6] LIU Hao. Research on differential absorption lidar for CO2 sensing[D], 75-83(2016).
[7] AMEDIEK A, FIX A, WIRTH M et al. Development of an OPO system at 1.57 um for integrated path DIAL measurement of atmospheric carbon dioxide[J]. Applied Physics, 92, 295-302(2008).
[8] AMEDIEK A, EHRET G, FIX A et al. CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 56, 5182(2017).
[9] ABSHIRE J B, RIRIS H, ALLAN G R et al. Pulsed airborne lidar measurements of atmospheric CO2 column absorption[J]. Tellus B: Chemical and Physical Meteorology, 62, 770-783(2010).
[10] ABSHIRE J B, RAMANATHAN A, RIRIS H et al. Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar[J]. Remote Sensing, 6, 443-469(2013).
[11] ABSHIRE J B, RAMANATHAN A, RIRIS H et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector[J]. Atmospheric Measurement Techniques, 11, 1-36(2018).
[12] HAN Ke, GONG Wei, MA Xin et al. A ground-based differential absorption lidar for atmospheric vertical CO2 profiling[J]. Acta Physica Sinica, 64, 230-238(2015).
[13] XIANG Chengzhi. Study on the frequency stabilization and signal processing of the ground-based infrared differential absorption lidar system for CO2 detection[D](2017).
[14] CHEN Weibiao, LIU Jiqiao, HOU Xia et al. Lidar technology for atmosphere environment monitoring satellite[J]. Aerospace Shanghai(Chinese & English), 40, 13-20,110(2023).
[15] GAO Xuejie, LIU Jiqiao, FAN Chuncan et al. Carbon dioxide column concentration measurement based on cloud echo signal of 1.57 μm IPDA lidar[J]. Chinese Journal of Lasers, 50, 210-222(2023).
[16] MA Xin, GONG Wei, MA Yingying et al. Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm[J]. Acta Physica Sinica, 64, 235-245(2015).
[17] WAGNER G A, PLUSQUELLIC D F. Multi-frequency differential absorption LIDAR system for remote sensing of CO[J]. Optics Express, 26, 19420-19434(2018).
[18] HONG Guanglie, LIANG Xindong, LIU Hao et al. Detection of CO2 average concentration in atmospheric path by CW modulated differential absorption lidar[J]. Spectroscopy and Spectral Analysis, 40, 3653-3658(2020).
[19] GORDON I E, ROTHMAN L S, HARGREAVES R J et al. The hitran2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277(2021).
[20] ZHU Xiangfei, LIN Zhaoxiang, LIU Linmei et al. Influence of temperature and pressure on absorption spectrum of around 1.6 µm for differential absorption lidar[J]. Acta Physica Sinica, 63, 161-167(2014).
[21] FAN Liwen. Study on working points control for Mach-Zehnder and dual-parallel Mach-Zehnder electrooptical modulator and its applications[D](2014).
Get Citation
Copy Citation Text
Ao HE, Linmei LIU, Guangbao YU, Yong YANG, Xin LIN, Zhaoxiang LIN, Faquan LI. Application of Frequency Stabilization and Frequency Shifting Technology Based on Electro-optic Modulation in Differential Absorption Lidar[J]. Acta Photonica Sinica, 2025, 54(4): 0414001
Category:
Received: Oct. 20, 2024
Accepted: Nov. 27, 2024
Published Online: May. 15, 2025
The Author Email: Linmei LIU (liulinmei@apm.ac.cn)