Acta Photonica Sinica, Volume. 54, Issue 4, 0414001(2025)

Application of Frequency Stabilization and Frequency Shifting Technology Based on Electro-optic Modulation in Differential Absorption Lidar

Ao HE1,2, Linmei LIU1、*, Guangbao YU1, Yong YANG1, Xin LIN1, Zhaoxiang LIN2, and Faquan LI1
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology,CAS,Wuhan 430071,China
  • 2College of Electronics and Information Engineering,South-Central Minzu University,Wuhan 430074,China
  • show less
    References(21)

    [1] QUEISSER M, BURTON M, KAZAHAYA R. Insights into geological processes with CO2 remotesensing-A review of technology and applications[J]. Earth-Science Reviews, 188, 389-426(2019).

    [2] ELSE B G T, YACKEL J J, PAPAKYRIAKOU T N. Application of satellite remote sensing techniques for estimating air-sea CO2 fluxes in Hudson Bay, Canada during the ice-free season[J]. Remote Sensing of Environment, 112, 3550-3562(2008).

    [3] DASH J, OGUTU B O. Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems[J]. Progress in Physical Geography: Earth and Environment, 40, 322-351(2016).

    [4] NASSAR R, SIORIS C E, JONES D B A et al. Satellite observations of CO2 from a highly elliptical orbit for studies of the Arctic and boreal carbon cycle[J]. Journal of Geophysical Research: Atmospheres, 119, 2654-2673(2014).

    [5] LARSSON J, BOOD J, XU C T et al. Atmospheric CO2 sensing using Scheimpflug-lidar based on a 1.57-µm fiber source[J]. Optics Express, 27, 17348-17358(2019).

    [6] LIU Hao. Research on differential absorption lidar for CO2 sensing[D], 75-83(2016).

    [7] AMEDIEK A, FIX A, WIRTH M et al. Development of an OPO system at 1.57 um for integrated path DIAL measurement of atmospheric carbon dioxide[J]. Applied Physics, 92, 295-302(2008).

    [8] AMEDIEK A, EHRET G, FIX A et al. CHARM-F—a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions[J]. Applied Optics, 56, 5182(2017).

    [9] ABSHIRE J B, RIRIS H, ALLAN G R et al. Pulsed airborne lidar measurements of atmospheric CO2 column absorption[J]. Tellus B: Chemical and Physical Meteorology, 62, 770-783(2010).

    [10] ABSHIRE J B, RAMANATHAN A, RIRIS H et al. Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar[J]. Remote Sensing, 6, 443-469(2013).

    [11] ABSHIRE J B, RAMANATHAN A, RIRIS H et al. Airborne measurements of CO2 column concentrations made with a pulsed IPDA lidar using a multiple-wavelength-locked laser and HgCdTe APD detector[J]. Atmospheric Measurement Techniques, 11, 1-36(2018).

    [12] HAN Ke, GONG Wei, MA Xin et al. A ground-based differential absorption lidar for atmospheric vertical CO2 profiling[J]. Acta Physica Sinica, 64, 230-238(2015).

    [13] XIANG Chengzhi. Study on the frequency stabilization and signal processing of the ground-based infrared differential absorption lidar system for CO2 detection[D](2017).

    [14] CHEN Weibiao, LIU Jiqiao, HOU Xia et al. Lidar technology for atmosphere environment monitoring satellite[J]. Aerospace Shanghai(Chinese & English), 40, 13-20,110(2023).

    [15] GAO Xuejie, LIU Jiqiao, FAN Chuncan et al. Carbon dioxide column concentration measurement based on cloud echo signal of 1.57 μm IPDA lidar[J]. Chinese Journal of Lasers, 50, 210-222(2023).

    [16] MA Xin, GONG Wei, MA Yingying et al. Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm[J]. Acta Physica Sinica, 64, 235-245(2015).

    [17] WAGNER G A, PLUSQUELLIC D F. Multi-frequency differential absorption LIDAR system for remote sensing of CO[J]. Optics Express, 26, 19420-19434(2018).

    [18] HONG Guanglie, LIANG Xindong, LIU Hao et al. Detection of CO2 average concentration in atmospheric path by CW modulated differential absorption lidar[J]. Spectroscopy and Spectral Analysis, 40, 3653-3658(2020).

    [19] GORDON I E, ROTHMAN L S, HARGREAVES R J et al. The hitran2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277(2021).

    [20] ZHU Xiangfei, LIN Zhaoxiang, LIU Linmei et al. Influence of temperature and pressure on absorption spectrum of around 1.6 µm for differential absorption lidar[J]. Acta Physica Sinica, 63, 161-167(2014).

    [21] FAN Liwen. Study on working points control for Mach-Zehnder and dual-parallel Mach-Zehnder electrooptical modulator and its applications[D](2014).

    Tools

    Get Citation

    Copy Citation Text

    Ao HE, Linmei LIU, Guangbao YU, Yong YANG, Xin LIN, Zhaoxiang LIN, Faquan LI. Application of Frequency Stabilization and Frequency Shifting Technology Based on Electro-optic Modulation in Differential Absorption Lidar[J]. Acta Photonica Sinica, 2025, 54(4): 0414001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 20, 2024

    Accepted: Nov. 27, 2024

    Published Online: May. 15, 2025

    The Author Email: Linmei LIU (liulinmei@apm.ac.cn)

    DOI:10.3788/gzxb20255404.0414001

    Topics