Remote Sensing Technology and Application, Volume. 40, Issue 4, 900(2025)
Research Progress on Remote Sensing Inversion of Total Phosphorus Concentration
[1] [1] KELEPERTZISE, ARGYRAKIA, DAFTSISE. Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A pre-mining survey[J]. Journal of Geochemical Exploration, 2012, 114: 70-81. DOI: 10.1016/j.gexplo.2011.12.006
[2] [2] MAR H, DUANH T, HUC M, et al. A half-century of changes in China’s lakes: Global warming or human influence?[J]. Geophysical Research Letters, 2010, 37(24): 1-6. DOI: 10.1029/2010GL045514
[3] [3] XIONGJ F, LINC, MAR H, et al. Remote sensing estimation of lake total phosphorus concentration based on MODIS: A case study of Lake Hongze[J]. Remote Sensing, 2019, 11(17): 2068. DOI: 10.3390/rs11172068
[4] [4] CAILongyan, LIYing, ZHENGZihang. Temporal and spatial distribution of nitrogen and phosphorus of lake systems in China and their impact on eutrophication[J]. Earth and Environment, 2010, 38(2): 235-241.
[5] [5] HARPOLEW S, NGAIJ T, CLELANDE E, et al. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852-862. DOI: 10.1111/j.1461-0248.2011.01651.x
[6] [6] WIMMERA, MARKUSA A, SCHUSTERM. Silver nanoparticle levels in river water:Real environmental measurements and modeling approaches—A comparative study[J]. Environmental Science & Technology Letters,2019,6(6): 353-358. DOI: 10.1021/acs.estlett.9b00211
[7] [7] LEC, ZHAY, LIY, et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668. DOI: 10.1007/s00267-010-9440-3
[8] [8] VOLLENWEIDERR. Phosphorus loading concept and great lakes eutrophication[M]. Phosphorus Management Strategies for Lakes, Ithaca, NY, 1980.
[9] [9] LEC F,HUC M,ENGLISHD,et al. Climate-driven chlorophyll-a changes in a turbid estuary:Observations from satelli-tes and implications for management[J].Remote Sensing of En-vironment,2013,130:11-24.DOI:10.1016/j.rse.2012.11.011
[10] [10] FANGC, SONGK S, PAERLH W, et al. Global divergent trends of algal blooms detected by satellite during 1982–2018[J]. Global Change Biology, 2022, 28(7): 2327-2340. DOI: 10.1111/gcb.16077
[11] [11] FANGChong. Water quality remote sensing inversion and spatiotemporal analysis on international lake[D]. Harbin: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2020.
[12] [12] HUANGC C, ZHANGY L, HUANGT, et al. Long-term variation of phytoplankton biomass and physiology in Taihu lake as observed via MODIS satellite[J]. Water Research, 2019, 153: 187-199. DOI: 10.1016/j.watres.2019.01.017
[13] [13] SHIK, ZHANGY L, ZHANGY B, et al. Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data[J]. Environmental Science and Technology, 2019, 53(5): 2324-2331. DOI: 10.1021/acs.est.8b06887
[14] [14] WENJun, LUOXianbao, LUODongqi, et al. Application research of ecological risk stressors: Nitrogen and phosphorus forecasting models of water body of Qiandao lake[J]. Research of Soil and Water Conservation, 2005, 12(6): 65-67.
[15] [15] DUC G, WANGQ, LIY M, et al. Estimation of total phosphorus concentration using a water classification method in inland water[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71: 29-42. DOI: 10.1016/j.jag.2018.05.007
[16] [16] GONGLuojun. Comparative study on plankton and main physical and chemical indexs of five lakes[D]. Wuhan: Huazhong Agricultural University, 2011.
[17] [17] LIPeipei, SHIWen, LIUQigen, et al. Spatial and temporal distribution patterns of chlorophyll-a and the correlation analysis with environmental factors in Lake Qiandao[J]. Journal of Lake Sciences, 2011, 23(4): 568-574.
[18] [18] SHANGLihai, LIQiuhua, QIUHuabei, et al. Chlorophyll-a distribution and phosphorus cycle in water body of Hongfeng Reservoir, Guizhou[J]. Chinese Journal of Ecology, 2011, 30(5): 1023-1030.
[19] [19] DONGYunxian, HONGXuehua, TANZhiwei, et al. Distribution of nitrogen and phosphorus and their relationships with chlorophyll-a in Lake Chenghai on plateau[J]. Ecology and Environmental Sciences, 2012, 21(2): 333-337.
[20] [20] WUC F, WUJ P, QIJ G, et al. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data[J]. International Journal of Remote Sensing, 2010, 31(9): 2309-2324. DOI: 10.1080/01431160902973873
[21] [21] FANChengxin, ZHANGLu, QINBaiqiang,et al. Estimation of dynamic release of phosphorus from suspended particles in Taihu Lake under wind and waves[J]. Science in China (Series D),2003,33(8):760-768.
[22] [22] ZHANGYunlin, QINBoqiang, CHENWeimin, et al. A study on total suspended matter in lake Taihu[J]. Resources and Environment in the Yangtze Basin, 2004, 13(3): 266-271.
[23] [23] JONESA S, STEVENSD K, HORSBURGHJ S, et al. Surrogate measures for providing high frequency estimates of total suspended solids and total phosphorus concentrations[J]. JAWRA Journal of the American Water Resources Association,2011,47(2):239-253. DOI:10.1111/j.1752-1688. 2010.00505.x
[24] [24] YUXiang. Study on MODIS remote sensing quantitative inversion technology of non optically active water quality parameters in the Bohai Sea[D].Yantai: Yantai Coastal Zone Research Institute, Chinese Academy of Sciences, 2017.
[25] [25] VOLLENWEIDERR. Advances in defining critical loading levels for phosphorus in lake eutrophication[J].Memorie Dell' Istituto Italiano Di Idrobiologia, 1976, 33: 53-83.
[26] [26] DURAIRAJP, SARANGIR K, RAMALINGAMS, et al. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data[J]. Environmental Monitoring and Assessment, 2015, 187(4): 176. DOI: 10.1007/s10661-015-4340-x
[27] [27] SARANGIR K, THANGARADJOUT, SARAVANAKUMARA, et al. Development of nitrate algorithm for the southwest bay of Bengal water and its implication using remote sensing satellite datasets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 983-991. DOI: 10.1109/JSTARS.2011.2165204
[28] [28] KUMARV, SHARMAA, CHAWLAA, et al. Water quality assessment of river Beas, India, using multivariate and remote sensing techniques[J]. Environmental Monitoring and Assessment, 2016, 188(3): 137. DOI: 10.1007/s10661-016-5141-6
[29] [29] MATHEWM M, SRINIVASA RAON, MANDLAV R. Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India[J]. Journal of Coastal Conservation, 2017, 21(6): 917-927. DOI: 10.1007/s11852-017-0561-1
[30] [30] WANGD F, CUIQ Y, GONGF, et al. Satellite retrieval of surface water nutrients in the coastal regions of the East China Sea[J]. Remote Sensing, 2018, 10(12): 1896. DOI: 10.3390/rs10121896
[31] [31] HUOVINENP, RAMÍREZJ, CAPUTOL, et al. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile[J]. Science of The Total Environment, 2019, 679: 196-208. DOI: 10.1016/j.scitotenv.2019.04.367
[32] [32] GAOY N, GAOJ F, YINH B, et al. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques[J]. Journal of Environmental Management,2015,151:33-43. DOI:10.1016/j.jenvman.2014.11.036
[33] [33] SUND Y, QIUZ F, LIY M, et al. Detection of total phosphorus concentrations of turbid inland waters using a remote sensing method[J]. Water, Air, & Soil Pollution, 2014, 225(5): 1953. DOI: 10.1007/s11270-014-1953-6
[34] [34] SONGK S, LIL, LIS, et al. Hyperspectral remote sensing of Total Phosphorus(TP) in Three central Indiana water supply reservoirs[J]. Water, Air, & Soil Pollution, 2012, 223(4): 1481-1502. DOI: 10.1007/s11270-011-0959-6
[35] [35] LIUWeihua, WANGSiyuan, MAYuanxu, et al. A remote sensing method for retrieving chlorophyll-a concentration from river water body[J]. Journal of Geo-Information Science, 2020, 22(10): 2062-2077.
[36] [36] LEC F, HUC M, CANNIZZAROJ, et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013, 129: 75-89. DOI: 10.1016/j.rse.2012.11.001
[37] [37] PANJie, ZHANGYing, TANZihui. Modeling the suspended sediment content in Sheyang Estuary based on hyperspectral data[J]. Marine Sciences, 2011, 35(9): 85-90.
[38] [38] XIONGJ F, LINC, CAOZ G, et al. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?[J]. Water Research, 2022, 215: 118213. DOI: 10.1016/j.watres.2022.118213
[39] [39] SIWei. Research on UAV-borne hyperspectral imagery for retrieval water quality parameters by machine learning algorithms[D]. Wuhan: Hubei University, 2022.
[40] [40] WANGYunxia. Inversion of total nitrogen and total phosphorus in Qinghe reservoir based on Landsat8[D]. Shenyang: Shenyang Agricultural University, 2017.王云霞. 基于Landsat8的清河水库总氮、总磷反演研究[D]. 沈阳: 沈阳农业大学, 2017.
[41] [41] LIX H, DINGJ L, ILYASN. Machine learning method for quick identification of Water Quality Index(WQI) based on Sentinel-2 MSI data: Ebinur Lake case study[J]. Water Supply, 2021, 21(3): 1291-1312. DOI: 10.2166/ws.2020.381
[42] [42] BELGIUM, DRĂGUŢL. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. DOI: 10.1016/j.isprsjprs.2016.01.011
[43] [43] TANGJunwu, TIANGuoliang, WANGXiaoyong, et al. The methods of water spectra measurement and analysis Ⅰ: Above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37-44.
[44] [44] SONGK S, LIL, LIS, et al. Hyperspectral remote sensing of Total Phosphorus (TP) in three central Indiana water supply reservoirs[J].Water,Air, & Soil Pollution,2012,223(4): 1481-1502. DOI: 10.1007/s11270-011-0959-6
[45] [45] DUANHongtao, ZHANGBai, SONGKaishan, et al. Hyperspectral monitoring model of eutrophication in Lake Nanhu, Changchun[J]. Journal of Lake Science, 2005, 17(3): 282-288.
[46] [46] BUKATAR P. Retrospection and introspection on remote sen-sing of inland water quality:“Like Déjà Vu All Over Again”[J].Journal of Great Lakes Research,2013,39:2-5. DOI: 10.1016/j.jglr.2013.04.001
[47] [47] MISHRAD R, OGASHAWARAI, GITELSONA A. Bio-optical Modeling and Remote Sensing of Inland Waters[M]. Amsterdam: Elsevier, 2017.
[48] [48] PALMERS C J, KUTSERT, HUNTERP D. Remote sensing of inland waters: Challenges, progress and future directions[J]. Remote Sensing of Environment,2015,157:1-8. DOI: 10.1016/j.rse.2014.09.021
[49] [49] PLATTT, SATHYENDRANATHS. Ecological indicators for the pelagic zone of the ocean from remote sensing[J]. Remote Sensing of Environment, 2008, 112(8): 3426-3436. DOI: 10.1016/j.rse.2007.10.016
[50] [50] HEY, JINS G, SHANGW. Water quality variability and related factors along the Yangtze River using Landsat-8[J]. Remote Sensing,2021,13(12):2241. DOI:10.3390/rs13122241
[51] [51] HUNTERP D, TYLERA N, CARVALHOL, et al. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes[J]. Remote Sensing of Environment, 2010, 114(11): 2705-2718. DOI: 10.1016/j.rse.2010.06.006
[52] [52] LINGF, LIX Y, FOODYG M, et al. Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 141-152. DOI: 10.1016/j.isprsjprs.2020.08.008
[53] [53] LUOJ H, PUR L, MAR H, et al. Mapping long-term spatiotemporal dynamics of pen aquaculture in a shallow lake: Less aquaculture coming along better water quality[J]. Remote Sensing, 2020, 12(11): 1866. DOI: 10.3390/rs12111866
[54] [54] LUS J, DENGR R, LIANGY H, et al. Remote sensing retrieval of total phosphorus in the Pearl River channels based on the GF-1 remote sensing data[J]. Remote Sensing, 2020, 12(9): 1420. DOI: 10.3390/rs12091420
[55] [55] DUChenggong, LIYunmei, WANGQiao, et al. Inversion model and daily variation of total phosphorus concentrations in Taihu Lake based on GOCI data[J]. Environmental Science, 2016, 37(3): 862-872.
[56] [56] NIUC, TANK, JIAX P, et al. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery[J]. Environmental Pollution,2021,286:117534. DOI:10.1016/j.envpol. 2021.117534
[57] [57] YIM I, SHINJ, LEEH, et al. Deep learning-based retrieval of cyanobacteria pigment in inland water for in situ and airborne hyperspectral data[J]. Ecological Indicators, 2020, 110: 105879. DOI: 10.1016/j.ecolind.2019.105879
[58] [58] LIANGY C, YINF, XIED N, et al. Inversion and monitoring of the TP concentration in Taihu Lake using the Landsat-8 and Sentinel-2 images[J]. Remote Sensing, 2022, 14(24): 6284. DOI: 10.3390/rs14246284
[59] [59] ZHONGY F,WANGX Y,XUY,et al.Mini-UAV-borne hy-perspectral remote sensing:From observation and processing to applications[J].IEEE Geoscience and Remote Sensing Maga-zine,2018,6(4):46-62. DOI:10.1109/MGRS.2018.2867592
[60] [60] KIEUH T, LAWA W. Remote sensing of coastal hydro-environment with Portable Unmanned Aerial Vehicles(pUAVs) a state-of-the-art review[J]. Journal of Hydro-Environment Research,2021,37:32-45. DOI:10.1016/j.jher.2021.04.003
[61] [61] XIAOY, GUOY H, YING D, et al. UAV multispectral image-based urban river water quality monitoring using stacked ensemble machine learning algorithms—A case study of the Zhanghe River, China[J]. Remote Sensing, 2022, 14(14): 3272. DOI: 10.3390/rs14143272
[62] [62] GHOLIZADEHM H, MELESSEA M, REDDIL. A comprehensive review on water quality parameters estimation using remote sensing techniques[J]. Sensors, 2016, 16(8): 1298. DOI: 10.3390/s16081298
Get Citation
Copy Citation Text
Haoming QIN, Kaishan SONG, Ge LIU, Zhuoshi LI, Chong FANG. Research Progress on Remote Sensing Inversion of Total Phosphorus Concentration[J]. Remote Sensing Technology and Application, 2025, 40(4): 900
Category:
Received: Jul. 29, 2024
Accepted: --
Published Online: Aug. 26, 2025
The Author Email: Chong FANG (fangchong@iga.ac.cn)