Remote Sensing Technology and Application, Volume. 40, Issue 4, 900(2025)
Research Progress on Remote Sensing Inversion of Total Phosphorus Concentration
[1] [1] KELEPERTZIS E, ARGYRAKI A, DAFTSIS E. Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A premining survey[J]. Journal of Geochemical Exploration, 2012, 114: 70-81. DOI: 10.1016/j.gexplo.2011.12.006
[2] [2] MA R H, DUAN H T, HU C M,et al. A half-century of changes in China's lakes: Global warming or human influence?[J]. Geophysical Research Letters, 2010, 37(24): 1-6. DOI: 10.1029/2010GL045514
[3] [3] XIONG J F, LIN C, MA R H,et al. Remote sensing estimation of lake total phosphorus concentration based on MODIS: A case study of Lake Hongze[J]. Remote Sensing, 2019, 11(17): 2068. DOI: 10.3390/rs11172068
[5] [5] HARPOLE W S, NGAI J T, CLELAND E E,et al. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852-862. DOI: 10.1111/j.1461-0248.2011.01651.x
[6] [6] WIMMER A, MARKUS A A, SCHUSTER M. Silver nanoparticle levels in river water: Real environmental measurements and modeling approaches—A comparative study[J]. Environmental Science & Technology Letters, 2019, 6(6): 353-358. DOI: 10.1021/acs.estlett.9b00211
[7] [7] LE C, ZHA Y, LI Y,et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668. DOI: 10.1007/s00267-010-9440-3
[8] [8] VOLLENWEIDER R. Phosphorus loading concept and great lakes eutrophication[M]. Phosphorus Management Strategies for Lakes, Ithaca, NY, 1980.
[9] [9] LE C F, HU C M, ENGLISH D,et al. Climate-driven chlorophyll-a changes in a turbid estuary: Observations from satellites and implications for management[J]. Remote Sensing of Environment, 2013, 130: 11-24. DOI: 10.1016/j.rse.2012.11.011
[10] [10] FANG C, SONG K S, PAERL H W,et al. Global divergent trends of algal blooms detected by satellite during 1982-2018[J]. Global Change Biology, 2022, 28(7): 2327-2340. DOI: 10.1111/gcb.16077
[12] [12] HUANG C C, ZHANG Y L, HUANG T,et al. Long-term variation of phytoplankton biomass and physiology in Taihu lake as observedviaMODIS satellite[J]. Water Research, 2019, 153: 187-199. DOI: 10.1016/j.watres.2019.01.017
[13] [13] SHI K, ZHANG Y L, ZHANG Y B,et al. Phenology of phytoplankton blooms in a trophic lake observed from longterm MODIS data[J]. Environmental Science and Technology, 2019, 53(5): 2324-2331. DOI: 10.1021/acs.est.8b06887
[15] [15] DU C G, WANG Q, LI Y M,et al. Estimation of total phosphorus concentration using a water classification method in inland water[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71: 29-42. DOI: 10.1016/j.jag.2018.05.007
[20] [20] WU C F, WU J P, QI J G,et al. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data[J]. International Journal of Remote Sensing, 2010, 31(9): 2309-2324. DOI: 10.1080/01431160902973873
[23] [23] JONES A S, STEVENS D K, HORSBURGH J S,et al. Surrogate measures for providing high frequency estimates of total suspended solids and total phosphorus concentrations[J]. JAWRA Journal of the American Water Resources Association, 2011, 47(2): 239-253. DOI: 10.1111/j.1752-1688.2010.00505.x
[25] [25] VOLLENWEIDER R. Advances in defining critical loading levels for phosphorus in lake eutrophication[J].Memorie Dell' Istituto Italiano Di Idrobiologia, 1976, 33: 53-83.
[26] [26] DURAIRAJ P, SARANGI R K, RAMALINGAM S,et al. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data[J]. Environmental Monitoring and Assessment, 2015, 187(4): 176. DOI: 10.1007/s10661-015-4340-x
[27] [27] SARANGI R K, THANGARADJOU T, SARAVANAKUMAR A,et al. Development of nitrate algorithm for the southwest bay of Bengal water and its implication using remote sensing satellite datasets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 983-991. DOI: 10.1109/JSTARS.2011.2165204
[28] [28] KUMAR V, SHARMA A, CHAWLA A,et al. Water quality assessment of river Beas, India, using multivariate and remote sensing techniques[J]. Environmental Monitoring and Assessment, 2016, 188(3): 137. DOI: 10.1007/s10661-016-5141-6
[29] [29] MATHEW M M, SRINIVASA RAO N, MANDLA V R. Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India[J]. Journal of Coastal Conservation, 2017, 21(6): 917-927. DOI: 10.1007/s11852-017-0561-1
[30] [30] WANG D F, CUI Q Y, GONG F,et al. Satellite retrieval of surface water nutrients in the coastal regions of the East China Sea[J]. Remote Sensing, 2018, 10(12): 1896. DOI: 10.3390/rs10121896
[31] [31] HUOVINEN P, RAMREZ J, CAPUTO L,et al. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile[J]. Science of The Total Environment, 2019, 679: 196-208. DOI: 10.1016/j.scitotenv.2019.04.367
[32] [32] GAO Y N, GAO J F, YIN H B,et al. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques[J]. Journal of Environmental Management, 2015, 151: 33-43. DOI: 10.1016/j.jenvman.2014.11.036
[33] [33] SUN D Y, QIU Z F, LI Y M,et al. Detection of total phosphorus concentrations of turbid inland waters using a remote sensing method[J]. Water, Air, & Soil Pollution, 2014, 225(5): 1953. DOI: 10.1007/s11270-014-1953-6
[34] [34] SONG K S, LI L, LI S,et al. Hyperspectral remote sensing of Total Phosphorus (TP) in Three central Indiana water supply reservoirs[J]. Water, Air, & Soil Pollution, 2012, 223(4): 1481-1502. DOI: 10.1007/s11270-011-0959-6
[36] [36] LE C F, HU C M, CANNIZZARO J,et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013, 129: 75-89. DOI: 10.1016/j.rse.2012.11.001
[38] [38] XIONG J F, LIN C, CAO Z G,et al. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?[J]. Water Research, 2022, 215: 118213. DOI: 10.1016/j.watres.2022.118213
[41] [41] LI X H, DING J L, ILYAS N. Machine learning method for quick identification of Water Quality Index(WQI) based on Sentinel-2 MSI data: Ebinur Lake case study[J]. Water Supply, 2021, 21(3): 1291-1312. DOI: 10.2166/ws.2020.381
[42] [42] BELGIU M, DRGU L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. DOI: 10.1016/j.isprsjprs.2016.01.011
[44] [44] SONG K S, LI L, LI S,et al. Hyperspectral remote sensing of Total Phosphorus (TP) in three central Indiana water supply reservoirs[J]. Water, Air, & Soil Pollution, 2012, 223(4): 1481-1502. DOI: 10.1007/s11270-011-0959-6
[46] [46] BUKATA R P. Retrospection and introspection on remote sensing of inland water quality: “Like Dj Vu All Over Again”[J]. Journal of Great Lakes Research, 2013, 39: 2-5. DOI: 10.1016/j.jglr.2013.04.001
[47] [47] MISHRA D R, OGASHAWARA I, GITELSON A A. Biooptical Modeling and Remote Sensing of Inland Waters[M]. Amsterdam: Elsevier, 2017.
[48] [48] PALMER S C J, KUTSER T, HUNTER P D. Remote sensing of inland waters: Challenges, progress and future directions[J]. Remote Sensing of Environment, 2015, 157: 1-8. DOI: 10.1016/j.rse.2014.09.021
[49] [49] PLATT T, SATHYENDRANATH S. Ecological indicators for the pelagic zone of the ocean from remote sensing[J]. Remote Sensing of Environment, 2008, 112(8): 3426-3436. DOI: 10.1016/j.rse.2007.10.016
[50] [50] HE Y, JIN S G, SHANG W. Water quality variability and related factors along the Yangtze River using Landsat-8[J]. Remote Sensing, 2021, 13(12): 2241. DOI: 10.3390/rs13122241
[51] [51] HUNTER P D, TYLER A N, CARVALHO L,et al. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes[J]. Remote Sensing of Environment, 2010, 114(11): 2705-2718. DOI: 10.1016/j.rse.2010.06.006
[52] [52] LING F, LI X Y, FOODY G M,et al. Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 141-152. DOI: 10.1016/j.isprsjprs.2020.08.008
[53] [53] LUO J H, PU R L, MA R H,et al. Mapping long-term spatiotemporal dynamics of pen aquaculture in a shallow lake: Less aquaculture coming along better water quality[J]. Remote Sensing, 2020, 12(11): 1866. DOI: 10.3390/rs12111866
[54] [54] LU S J, DENG R R, LIANG Y H,et al. Remote sensing retrieval of total phosphorus in the Pearl River channels based on the GF-1 remote sensing data[J]. Remote Sensing, 2020, 12(9): 1420. DOI: 10.3390/rs12091420
[56] [56] NIU C, TAN K, JIA X P,et al. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery[J]. Environmental Pollution, 2021, 286: 117534. DOI: 10.1016/j.envpol.2021.117534
[57] [57] YIM I, SHIN J, LEE H,et al. Deep learning-based retrieval of cyanobacteria pigment in inland water forin situand airborne hyperspectral data[J]. Ecological Indicators, 2020, 110: 105879. DOI: 10.1016/j.ecolind.2019.105879
[58] [58] LIANG Y C, YIN F, XIE D N,et al. Inversion and monitoring of the TP concentration in Taihu Lake using the Landsat-8 and Sentinel-2 images[J]. Remote Sensing, 2022, 14(24): 6284. DOI: 10.3390/rs14246284
[59] [59] ZHONG Y F, WANG X Y, XU Y,et al. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62. DOI: 10.1109/MGRS.2018.2867592
[60] [60] KIEU H T, LAW A W. Remote sensing of coastal hydro-environment with Portable Unmanned Aerial Vehicles(pUAVs) a state-of-the-art review[J]. Journal of Hydro-Environment Research, 2021, 37: 32-45. DOI: 10.1016/j.jher.2021.04.003
[61] [61] XIAO Y, GUO Y H, YIN G D,et al. UAV multispectral image-based urban river water quality monitoring using stacked ensemble machine learning algorithms—A case study of the Zhanghe River, China[J]. Remote Sensing, 2022, 14(14): 3272. DOI: 10.3390/rs14143272
[62] [62] GHOLIZADEH M H, MELESSE A M, REDDI L. A comprehensive review on water quality parameters estimation using remote sensing techniques[J]. Sensors, 2016, 16(8): 1298. DOI: 10.3390/s16081298
Get Citation
Copy Citation Text
QIN Haoming, SONG Kaishan, LIU Ge, LI Zhuoshi, FANG Chong. Research Progress on Remote Sensing Inversion of Total Phosphorus Concentration[J]. Remote Sensing Technology and Application, 2025, 40(4): 900
Received: Jul. 29, 2024
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: FANG Chong (fangchong@iga.ac.cn)