Remote Sensing Technology and Application, Volume. 40, Issue 4, 900(2025)

Research Progress on Remote Sensing Inversion of Total Phosphorus Concentration

QIN Haoming1,2, SONG Kaishan1, LIU Ge1, LI Zhuoshi2,3, and FANG Chong1、*
Author Affiliations
  • 1Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
  • 2College of Information Technology, Jilin Agricultural University, Changchun 130118, China
  • 3College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
  • show less
    References(45)

    [1] [1] KELEPERTZIS E, ARGYRAKI A, DAFTSIS E. Geochemical signature of surface water and stream sediments of a mineralized drainage basin at NE Chalkidiki, Greece: A premining survey[J]. Journal of Geochemical Exploration, 2012, 114: 70-81. DOI: 10.1016/j.gexplo.2011.12.006

    [2] [2] MA R H, DUAN H T, HU C M,et al. A half-century of changes in China's lakes: Global warming or human influence?[J]. Geophysical Research Letters, 2010, 37(24): 1-6. DOI: 10.1029/2010GL045514

    [3] [3] XIONG J F, LIN C, MA R H,et al. Remote sensing estimation of lake total phosphorus concentration based on MODIS: A case study of Lake Hongze[J]. Remote Sensing, 2019, 11(17): 2068. DOI: 10.3390/rs11172068

    [5] [5] HARPOLE W S, NGAI J T, CLELAND E E,et al. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 2011, 14(9): 852-862. DOI: 10.1111/j.1461-0248.2011.01651.x

    [6] [6] WIMMER A, MARKUS A A, SCHUSTER M. Silver nanoparticle levels in river water: Real environmental measurements and modeling approaches—A comparative study[J]. Environmental Science & Technology Letters, 2019, 6(6): 353-358. DOI: 10.1021/acs.estlett.9b00211

    [7] [7] LE C, ZHA Y, LI Y,et al. Eutrophication of lake waters in China: Cost, causes, and control[J]. Environmental Management, 2010, 45(4): 662-668. DOI: 10.1007/s00267-010-9440-3

    [8] [8] VOLLENWEIDER R. Phosphorus loading concept and great lakes eutrophication[M]. Phosphorus Management Strategies for Lakes, Ithaca, NY, 1980.

    [9] [9] LE C F, HU C M, ENGLISH D,et al. Climate-driven chlorophyll-a changes in a turbid estuary: Observations from satellites and implications for management[J]. Remote Sensing of Environment, 2013, 130: 11-24. DOI: 10.1016/j.rse.2012.11.011

    [10] [10] FANG C, SONG K S, PAERL H W,et al. Global divergent trends of algal blooms detected by satellite during 1982-2018[J]. Global Change Biology, 2022, 28(7): 2327-2340. DOI: 10.1111/gcb.16077

    [12] [12] HUANG C C, ZHANG Y L, HUANG T,et al. Long-term variation of phytoplankton biomass and physiology in Taihu lake as observedviaMODIS satellite[J]. Water Research, 2019, 153: 187-199. DOI: 10.1016/j.watres.2019.01.017

    [13] [13] SHI K, ZHANG Y L, ZHANG Y B,et al. Phenology of phytoplankton blooms in a trophic lake observed from longterm MODIS data[J]. Environmental Science and Technology, 2019, 53(5): 2324-2331. DOI: 10.1021/acs.est.8b06887

    [15] [15] DU C G, WANG Q, LI Y M,et al. Estimation of total phosphorus concentration using a water classification method in inland water[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 71: 29-42. DOI: 10.1016/j.jag.2018.05.007

    [20] [20] WU C F, WU J P, QI J G,et al. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data[J]. International Journal of Remote Sensing, 2010, 31(9): 2309-2324. DOI: 10.1080/01431160902973873

    [23] [23] JONES A S, STEVENS D K, HORSBURGH J S,et al. Surrogate measures for providing high frequency estimates of total suspended solids and total phosphorus concentrations[J]. JAWRA Journal of the American Water Resources Association, 2011, 47(2): 239-253. DOI: 10.1111/j.1752-1688.2010.00505.x

    [25] [25] VOLLENWEIDER R. Advances in defining critical loading levels for phosphorus in lake eutrophication[J].Memorie Dell' Istituto Italiano Di Idrobiologia, 1976, 33: 53-83.

    [26] [26] DURAIRAJ P, SARANGI R K, RAMALINGAM S,et al. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data[J]. Environmental Monitoring and Assessment, 2015, 187(4): 176. DOI: 10.1007/s10661-015-4340-x

    [27] [27] SARANGI R K, THANGARADJOU T, SARAVANAKUMAR A,et al. Development of nitrate algorithm for the southwest bay of Bengal water and its implication using remote sensing satellite datasets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 983-991. DOI: 10.1109/JSTARS.2011.2165204

    [28] [28] KUMAR V, SHARMA A, CHAWLA A,et al. Water quality assessment of river Beas, India, using multivariate and remote sensing techniques[J]. Environmental Monitoring and Assessment, 2016, 188(3): 137. DOI: 10.1007/s10661-016-5141-6

    [29] [29] MATHEW M M, SRINIVASA RAO N, MANDLA V R. Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India[J]. Journal of Coastal Conservation, 2017, 21(6): 917-927. DOI: 10.1007/s11852-017-0561-1

    [30] [30] WANG D F, CUI Q Y, GONG F,et al. Satellite retrieval of surface water nutrients in the coastal regions of the East China Sea[J]. Remote Sensing, 2018, 10(12): 1896. DOI: 10.3390/rs10121896

    [31] [31] HUOVINEN P, RAMREZ J, CAPUTO L,et al. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile[J]. Science of The Total Environment, 2019, 679: 196-208. DOI: 10.1016/j.scitotenv.2019.04.367

    [32] [32] GAO Y N, GAO J F, YIN H B,et al. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques[J]. Journal of Environmental Management, 2015, 151: 33-43. DOI: 10.1016/j.jenvman.2014.11.036

    [33] [33] SUN D Y, QIU Z F, LI Y M,et al. Detection of total phosphorus concentrations of turbid inland waters using a remote sensing method[J]. Water, Air, & Soil Pollution, 2014, 225(5): 1953. DOI: 10.1007/s11270-014-1953-6

    [34] [34] SONG K S, LI L, LI S,et al. Hyperspectral remote sensing of Total Phosphorus (TP) in Three central Indiana water supply reservoirs[J]. Water, Air, & Soil Pollution, 2012, 223(4): 1481-1502. DOI: 10.1007/s11270-011-0959-6

    [36] [36] LE C F, HU C M, CANNIZZARO J,et al. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary[J]. Remote Sensing of Environment, 2013, 129: 75-89. DOI: 10.1016/j.rse.2012.11.001

    [38] [38] XIONG J F, LIN C, CAO Z G,et al. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?[J]. Water Research, 2022, 215: 118213. DOI: 10.1016/j.watres.2022.118213

    [41] [41] LI X H, DING J L, ILYAS N. Machine learning method for quick identification of Water Quality Index(WQI) based on Sentinel-2 MSI data: Ebinur Lake case study[J]. Water Supply, 2021, 21(3): 1291-1312. DOI: 10.2166/ws.2020.381

    [42] [42] BELGIU M, DRGU L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31. DOI: 10.1016/j.isprsjprs.2016.01.011

    [44] [44] SONG K S, LI L, LI S,et al. Hyperspectral remote sensing of Total Phosphorus (TP) in three central Indiana water supply reservoirs[J]. Water, Air, & Soil Pollution, 2012, 223(4): 1481-1502. DOI: 10.1007/s11270-011-0959-6

    [46] [46] BUKATA R P. Retrospection and introspection on remote sensing of inland water quality: “Like Dj Vu All Over Again”[J]. Journal of Great Lakes Research, 2013, 39: 2-5. DOI: 10.1016/j.jglr.2013.04.001

    [47] [47] MISHRA D R, OGASHAWARA I, GITELSON A A. Biooptical Modeling and Remote Sensing of Inland Waters[M]. Amsterdam: Elsevier, 2017.

    [48] [48] PALMER S C J, KUTSER T, HUNTER P D. Remote sensing of inland waters: Challenges, progress and future directions[J]. Remote Sensing of Environment, 2015, 157: 1-8. DOI: 10.1016/j.rse.2014.09.021

    [49] [49] PLATT T, SATHYENDRANATH S. Ecological indicators for the pelagic zone of the ocean from remote sensing[J]. Remote Sensing of Environment, 2008, 112(8): 3426-3436. DOI: 10.1016/j.rse.2007.10.016

    [50] [50] HE Y, JIN S G, SHANG W. Water quality variability and related factors along the Yangtze River using Landsat-8[J]. Remote Sensing, 2021, 13(12): 2241. DOI: 10.3390/rs13122241

    [51] [51] HUNTER P D, TYLER A N, CARVALHO L,et al. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes[J]. Remote Sensing of Environment, 2010, 114(11): 2705-2718. DOI: 10.1016/j.rse.2010.06.006

    [52] [52] LING F, LI X Y, FOODY G M,et al. Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 141-152. DOI: 10.1016/j.isprsjprs.2020.08.008

    [53] [53] LUO J H, PU R L, MA R H,et al. Mapping long-term spatiotemporal dynamics of pen aquaculture in a shallow lake: Less aquaculture coming along better water quality[J]. Remote Sensing, 2020, 12(11): 1866. DOI: 10.3390/rs12111866

    [54] [54] LU S J, DENG R R, LIANG Y H,et al. Remote sensing retrieval of total phosphorus in the Pearl River channels based on the GF-1 remote sensing data[J]. Remote Sensing, 2020, 12(9): 1420. DOI: 10.3390/rs12091420

    [56] [56] NIU C, TAN K, JIA X P,et al. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery[J]. Environmental Pollution, 2021, 286: 117534. DOI: 10.1016/j.envpol.2021.117534

    [57] [57] YIM I, SHIN J, LEE H,et al. Deep learning-based retrieval of cyanobacteria pigment in inland water forin situand airborne hyperspectral data[J]. Ecological Indicators, 2020, 110: 105879. DOI: 10.1016/j.ecolind.2019.105879

    [58] [58] LIANG Y C, YIN F, XIE D N,et al. Inversion and monitoring of the TP concentration in Taihu Lake using the Landsat-8 and Sentinel-2 images[J]. Remote Sensing, 2022, 14(24): 6284. DOI: 10.3390/rs14246284

    [59] [59] ZHONG Y F, WANG X Y, XU Y,et al. Mini-UAV-borne hyperspectral remote sensing: From observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(4): 46-62. DOI: 10.1109/MGRS.2018.2867592

    [60] [60] KIEU H T, LAW A W. Remote sensing of coastal hydro-environment with Portable Unmanned Aerial Vehicles(pUAVs) a state-of-the-art review[J]. Journal of Hydro-Environment Research, 2021, 37: 32-45. DOI: 10.1016/j.jher.2021.04.003

    [61] [61] XIAO Y, GUO Y H, YIN G D,et al. UAV multispectral image-based urban river water quality monitoring using stacked ensemble machine learning algorithms—A case study of the Zhanghe River, China[J]. Remote Sensing, 2022, 14(14): 3272. DOI: 10.3390/rs14143272

    [62] [62] GHOLIZADEH M H, MELESSE A M, REDDI L. A comprehensive review on water quality parameters estimation using remote sensing techniques[J]. Sensors, 2016, 16(8): 1298. DOI: 10.3390/s16081298

    Tools

    Get Citation

    Copy Citation Text

    QIN Haoming, SONG Kaishan, LIU Ge, LI Zhuoshi, FANG Chong. Research Progress on Remote Sensing Inversion of Total Phosphorus Concentration[J]. Remote Sensing Technology and Application, 2025, 40(4): 900

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 29, 2024

    Accepted: Aug. 26, 2025

    Published Online: Aug. 26, 2025

    The Author Email: FANG Chong (fangchong@iga.ac.cn)

    DOI:10.11873/j.issn.1004-0323.2025.4.0900

    Topics