Opto-Electronic Engineering, Volume. 50, Issue 9, 230124-1(2023)

Optofluidic refractometric sensor based on quasi-bound states in the continuum in all-dielectric metasurface

Weidong Hu1,2,3, Xiang Du1,2,3, Siyu Liu1,2, Wanxia Huang1,2, Fenghua Shi1,2, Jianping Shi1,2、*, and Guangyuan Li3,4、**
Author Affiliations
  • 1College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, China
  • 2Anhui Province Key Laboratory of Photo-electronic Materials Science and Technology, Wuhu, Anhui 241000, China
  • 3Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
  • 4Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
  • show less
    References(43)

    [1] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nat Rev Mater, 1, 16048(2016).

    [2] Fang C Z, Yang Q Y, Yuan Q C et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces[J]. Opto-Electron Adv, 4, 200030(2021).

    [3] Azzam S I, Kildishev A V. Photonic bound states in the continuum: From basics to application[J]. Adv Opt Mater, 9, 2001469(2021).

    [4] Joseph S, Pandey S, Sarkar S et al. Bound states in the continuum in resonant nanostructures: an overview of engineered materials for tailored applications[J]. Nanophotonics, 10, 4175-4207(2021).

    [5] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum[J]. Sci Bull, 64, 793-796(2019).

    [6] Ha S T, Fu Y H, Emani N K et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nat Nanotechnol, 13, 1042-1047(2018).

    [7] Kodigala A, Lepetit T, Gu Q et al. Lasing action from photonic bound states in continuum[J]. Nature, 541, 196-199(2017).

    [8] Dai J M, Zhang Y F, Chen Y X et al. Research progress on Terahertz wave generation from liquid water[J]. Chin J Lasers, 48, 1914003(2021).

    [9] Xing H Y, Fan J X, Lu D et al. Terahertz metamaterials for free-space and on-chip applications: From active metadevices to topological photonic crystals[J]. Adv Dev Instrumen, 2022, 9852503(2022).

    [10] Carletti L, Koshelev K, De Angelis C et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Phys Rev Lett, 121, 033903(2018).

    [11] Liu Z J, Wang J Y, Chen B et al. Giant enhancement of continuous wave second harmonic generation from Few-Layer GaSe coupled to high-Q quasi bound states in the continuum[J]. Nano Lett, 21, 7405-7410(2021).

    [12] Liu Z J, Xu Y, Lin Y et al. High-Q quasin bound states in the continuum for nonlinear metasurfaces[J]. Phys Rev Lett, 123, 253901(2019).

    [13] Chen Y, Du W, Zhang Q et al. Multidimensional nanoscopic chiroptics[J]. Nat Rev Phys, 4, 113-124(2022).

    [14] Luo Y, Chi C, Jiang M J et al. Plasmonic chiral nanostructures: Chiroptical effects and applications[J]. Adv Opt Mater, 5, 1700040(2017).

    [15] Romano S, Zito G, Torino S et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Res, 6, 726-734(2018).

    [16] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nat Photonics, 13, 390-396(2019).

    [17] Leal-Junior A, Avellar L, Biazi V et al. Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development[J]. Opto-Electron Adv, 5, 210098(2022).

    [18] Maksimov D N, Gerasimov V S, Romano S et al. Refractive index sensing with optical bound states in the continuum[J]. Opt Express, 28, 38907-38916(2020).

    [19] Huo Y Y, Zhang X, Yan M et al. Highly-sensitive sensor based on toroidal dipole governed by bound state in the continuumin dielectric non-coaxial core-shell cylinder[J]. Opt Express, 30, 19030-19041(2022).

    [20] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [21] Wang P F, He F Y, Liu J J et al. High-Q terahertz all-dielectric metasurface based on bound states in the continuum[J]. Laser Technol, 46, 630-635(2022).

    [22] Hong P L, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer[J]. Opto-Electron Adv, 5, 200097(2022).

    [23] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Phys Rev Lett, 121, 193903(2018).

    [24] Fan J X, Li Z L, Xue Z Q et al. Hybrid bound states in the continuum in terahertz metasurfaces[J]. Opto-Electronic Sci, 2, 230006(2023).

    [25] Du X, Shi J, Li G Y et al. Dual-band bound states in the continum based on hybridization of surface laatice resonces[J]. Nanophotonics, 11, 4843-4853(2022).

    [26] Rodrigo D, Tittl A, Ait-Bouziad N et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces[J]. Nat Commun, 9, 2160(2018).

    [27] Diaz-Diestra D, Thapa B, Beltran-Huarac J et al. L-cysteine capped ZnS: Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosens Bioelectron, 87, 693-700(2017).

    [28] Liu G S, Xiong X, Shi H Q et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photon Res, 8, 448-456(2020).

    [29] Wang X X, Chen H W, Zhu J K et al. Research on surface plasmon refractive index sensing of gold nano cone array andgold film coupling structure[J]. Opto-Electron Eng, 49, 220135(2022).

    [30] Zhang Y N, Zhao Y, Lv R Q. A review for optical sensors based on photonic crystal cavities[J]. Sensors Actuat A Phys, 233, 374-389(2015).

    [31] Baaske M D, Vollmer F. Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution[J]. Nat Photon, 10, 733-739(2016).

    [32] Xu X Y, Chen W J, Zhao G M et al. Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping[J]. Light Sci Appl, 7, 62(2018).

    [33] David A, Benisty H, Weisbuch C. Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape[J]. Phys Rev B, 73, 075107(2006).

    [34] Bin-Alam M S, Reshef O, Mamchur Y et al. Ultra-high-Q resonances in plasmonic metasurfaces[J]. Nat Commun, 12, 974(2021).

    [35] Liu B W, Chen S, Zhang J C et al. A plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm[J]. Adv Mater, 30, 1706031(2018).

    [36] Yang A K, Hoang T B, Dridi M et al. Real-time tunable lasing from plasmonic nanocavity arrays[J]. Nat Commun, 6, 6939(2015).

    [37] Baur S, Sanders S, Manjavacas A. Hybridization of lattice resonances[J]. ACS Nano, 12, 1618-1629(2018).

    [39] Wang Z, Xue Q, Zhao S L et al. Study on the characteristics of a photonic crystal sensor with rectangular lattice based on bound states in the continuum[J]. J Phys D Appl Phys, 55, 175106(2022).

    [40] Campione S, Liu S, Basilio L I et al. Broken symmetry dielectric resonators for high quality factor Fano metasurfaces[J]. ACS Photonics, 3, 2362-2367(2016).

    [41] Zhang Q, Wen X L, Li G Y et al. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities[J]. ACS Nano, 7, 11071-11078(2013).

    [42] Hu J, Lang T T, Shi G H. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface[J]. Opt Express, 25, 15241-15251(2017).

    [43] Yang Y M, Kravchenko I I, Briggs D P et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nat Commun, 5, 5753(2014).

    Tools

    Get Citation

    Copy Citation Text

    Weidong Hu, Xiang Du, Siyu Liu, Wanxia Huang, Fenghua Shi, Jianping Shi, Guangyuan Li. Optofluidic refractometric sensor based on quasi-bound states in the continuum in all-dielectric metasurface[J]. Opto-Electronic Engineering, 2023, 50(9): 230124-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: May. 26, 2023

    Accepted: Jul. 28, 2023

    Published Online: Jan. 24, 2024

    The Author Email: Jianping Shi (石建平), Guangyuan Li (李光元)

    DOI:10.12086/oee.2023.230124

    Topics