Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 10, 1409(2023)

Image rain removal algorithm based on multi-cascade progressive convolution structure

Yong ZHANG1,2, Jie-long GUO2、*, Fan WANG1,2, Hai LAN2, Hui YU2, and Xian WEI2
Author Affiliations
  • 1College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China
  • 2Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350108,China
  • show less
    Figures & Tables(18)
    Multi-cascade progressive convolution structure
    Multi-cascade progressive convolution structure with lightweight parameters
    Schematic diagram of progressive cycle image deraining network structure
    Rain removal network based on multi-cascade progressive convolution structure
    Visualization results of artificially synthesized rainy day image dataset for rain removal experiment
    Visualization results of rain removal experiments on synthetic rainy image datasets in the field of autonomous driving
    Real rainy image derained visualization results
    Line chart of the experimental results(PSNR index)of different cycle times of the network
    Line chart of the experimental results(SSIM index)of different cycle times of the network
    Schematic diagram of ablation experiment structures
    • Table 1. Experimental hardware environment

      View table
      View in Article

      Table 1. Experimental hardware environment

      实验硬件环境环境配置
      核心处理器Intel Xeon Gold 5220@2.2 GHz
      内存容量256 GB
      显卡型号NVIDIA GeForce RTX 2080Ti
    • Table 2. Experimental software environment

      View table
      View in Article

      Table 2. Experimental software environment

      实验软件环境环境配置
      服务器系统Linux 7.6.1810
      编程语言Python 3.7.11
      深度学习框架Pytorch 1.7.1
      开发工具PyCharm 11.0.11;Matlab
      CUDA版本10.1.243
    • Table 3. Experimental results of artificially synthesized rainy image dataset

      View table
      View in Article

      Table 3. Experimental results of artificially synthesized rainy image dataset

      模型评价指标Rain100HRain100LRain800
      GMMPSNR14.2629.1121.27
      SSIM0.5410.8810.764
      DDNPSNR22.2634.8524.04
      SSIM0.6900.9500.867
      RESCANPSNR26.6037.0724.09
      SSIM0.8970.9870.841
      DCSFNPSNR27.5336.6026.08
      SSIM0.8900.9790.864
      PreNetPSNR29.4537.3826.47
      SSIM0.8990.9780.889
      AID-DWTPSNR29.8533.5726.11
      SSIM0.9020.9580.876
      本文方法PSNR30.7037.9127.63
      SSIM0.9140.9800.894
    • Table 4. Experimental results of synthetic rainy image datasets in the field of autonomous driving

      View table
      View in Article

      Table 4. Experimental results of synthetic rainy image datasets in the field of autonomous driving

      模型评价指标BDD1000
      GMMPSNR24.33
      SSIM0.790
      RESCANPSNR30.68
      SSIM0.924
      DCSFNPSNR31.44
      SSIM0.943
      AID-DWTPSNR33.08
      SSIM0.962
      PreNetPSNR35.07
      SSIM0.977
      本文方法PSNR35.74
      SSIM0.977
    • Table 5. NIQE evaluation on real rainy images

      View table
      View in Article

      Table 5. NIQE evaluation on real rainy images

      模型真实雨图NIQE评分
      GMMBike14.984
      Park22.837
      Road19.235
      DDNBike14.785
      Park23.811
      Road19.498
      RESCANBike12.473
      Park24.634
      Road19.507
      DCSFNBike12.444
      Park21.356
      Road21.528
      PreNetBike12.443
      Park22.908
      Road24.199
      AID-DWTBike14.193
      Park22.513
      Road21.913
      本文方法Bike12.408
      Park21.119
      Road18.336
    • Table 6. Ablation experiment results of different number of structural branches

      View table
      View in Article

      Table 6. Ablation experiment results of different number of structural branches

      模型评价指标Rain100HRain100LRain800
      结构APSNR30.7037.9127.63
      SSIM0.9140.9800.894
      结构BPSNR30.2837.6727.06
      SSIM0.9100.9800.891
      结构CPSNR30.6237.8127.15
      SSIM0.9130.9800.892
      结构DPSNR30.5637.7227.35
      SSIM0.9120.9800.892
      基准方法PSNR29.4537.3826.47
      SSIM0.8990.9780.889
    • Table 7. Lightweight structure model experimental results

      View table
      View in Article

      Table 7. Lightweight structure model experimental results

      模型评价指标Rain100HRain100LRain800
      本文方法PSNR30.7037.9127.63
      SSIM0.9140.9800.894
      轻量化改进的方法PSNR29.9037.7626.92
      SSIM0.9050.9800.890
      基准方法PSNR29.4537.3826.47
      SSIM0.8990.9780.889
    • Table 8. Lightweight structure model parameter quantity and algorithm complexity

      View table
      View in Article

      Table 8. Lightweight structure model parameter quantity and algorithm complexity

      模型参数量算法复杂度/GFLOPs
      轻量化改进的方法138 7231.39
      基准方法168 9631.69
    Tools

    Get Citation

    Copy Citation Text

    Yong ZHANG, Jie-long GUO, Fan WANG, Hai LAN, Hui YU, Xian WEI. Image rain removal algorithm based on multi-cascade progressive convolution structure[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(10): 1409

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Nov. 16, 2022

    Accepted: --

    Published Online: Oct. 25, 2023

    The Author Email: Jie-long GUO (gjl@fjirsm.ac.cn)

    DOI:10.37188/CJLCD.2022-0383

    Topics