Acta Photonica Sinica, Volume. 52, Issue 5, 0552204(2023)
Technique and Astronomical Applications of Photonic Lanterns(Invited)
[1] CUI X, ZHAO Y, CHU Y et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST)[J]. Research in Astronomy and Astrophysics, 12, 1197-1242(2012).
[2] SIMARD L. The Thirty-Meter Telescope: science and instrumentation for a next-generation observatory[J]. Journal of Astrophysics and Astronomy, 34, 97-120(2013).
[3] GARDNER J P, MATHER J C, CLAMPIN M et al. The james webb space telescope[J]. Space Science Reviews, 123, 485-606(2006).
[4] TONG Xue, LIN Dong, HE Jinping. Research status and application prospects of astrophotonics[J]. Acta Astronomica Sinica, 63, 51(2022).
[5] GATKINE P, VEILLEUX S, MATHER J et al. State of the profession: astrophotonics[J]. Bulletin of the American Astronomical Society, 51, 285(2019).
[6] SUN W, YAN Q, BI Y et al. Photonic lantern with cladding-removable fibers[C], 9151, 9151C(2014).
[7] YU H, YAN Q, HUANG Z et al. Photonic lantern with multimode fibers embedded[J]. Research in Astronomy and Astrophysics, 14, 1046(2014).
[8] BIRKS T A, GRIS-SANCHEZ I, YEROLATSITIS S et al. The photonic lantern[J]. Advances in Optics and Photonics, 7, 107-167(2015).
[9] LEON-SAVAL S G, BIRKS T, BLAND-HAWTHORN J et al. Multimode fiber devices with single-mode performance[J]. Optics Letters, 30, 2545-2547(2005).
[10] LIN J, FITZGERALD M P, XIN Y et al. Focal-plane wavefront sensing with photonic lanterns: theoretical framework[J]. Journal of the Optical Society of America B, 39, 2643-2656(2022).
[11] LEON-SAVAL S G, FONTAINE N K, SALAZAR-GIL J R et al. Mode-selective photonic lanterns for spacedivision multiplexing[J]. Optics Express, 22, 1036-1044(2014).
[12] VELAZQUEZ-BENITEZ A M, ANTONIO-LOPEZ J E, ALVARADO-ZACARIAS J C et al. Scaling photonic lanterns for space-division multiplexing[J]. Scientific Reports, 8, 8897(2018).
[13] LEON-SAVAL S G, ARGYROS A, BLAND-HAWTHORN J. Photonic lanterns[J]. Nanophotonics, 2, 429-440(2013).
[14] LEON-SAVAL S G, ARGYROS A, BLAND-HAWTHORN J. Photonic lanterns: a study of light propagation in multimode to single-mode converters[J]. Optics Express, 18, 8430-8439(2010).
[15] KITTEL C, MCEUEN P[M]. Introduction to solid state physics(2018).
[16] KUHLMEY B T, WHITE T P, RENVERSEZ G et al. Multipole method for microstructured optical fibers. Ⅱ. Implementation and results[J]. Journal of the Optical Society of America B, 19, 2331-2340(2002).
[17] FONTAINE N K, RYF R, BLAND-HAWTHORN J et al. Geometric requirements for photonic lanterns in space division multiplexing[J]. Optics Express, 20, 27123-27132(2012).
[18] BIRKS T A, MANGAN B J, DIEZ A et al. Photonic lantern” spectral filters in multi-core Fiber[J]. Optics Express, 20, 13996-14008(2012).
[19] SNYDER A W, LOVE J D[M]. Optical waveguide theory(1983).
[20] LOVE J, HENRY W, STEWART W et al. Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria[J]. IEE Proceedings J: Optoelectronics, 138, 343-354(1991).
[21] RYF R, FONTAINE N K, ESSIAMBRE R J. Spot-based mode couplers for mode-multiplexed transmission in few-mode fiber[J]. IEEE Photonics Technology Letters, 24, 1973-1976(2012).
[22] BULOW H. Optical-mode demultiplexing by optical MIMO filtering of spatial samples[J]. IEEE Photonics Technology Letters, 24, 1045-1047(2012).
[23] NOORDEGRAAF D, SKOVGAARD P M W, NIELSEN M D et al. Efficient multi-mode to single-mode coupling in a photonic lantern[J]. Optics Express, 17, 1988-1994(2009).
[24] THOMSON R R, BIRKS T A, LEON-SAVAL S G et al. Ultrafast laser inscription of an integrated photonic lantern[J]. Optics Express, 19, 5698-5705(2011).
[25] SPALENIAK I, GROSS S, JOVANOVIC N et al. Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings[J]. Laser & Photonics Reviews, 8, L1-L5(2014).
[26] FONTAINE N K, LEON-SAVAL S G, RYF R et al. Mode-selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber[C], 1-3(2013).
[27] LUAN F, GEORGE A K, HEDLEY T et al. All-solid photonic bandgap fiber[J]. Optics Letters, 29, 2369-2371(2004).
[28] BLAND-HAWTHORN J, ELLIS S C, LEON-SAVAL S G et al. A complex multi-notch astronomical filter to suppress the bright infrared sky[J]. Nature Communications, 2, 581(2011).
[29] NOORDEGRAAF D, SKOVGAARD P M W, MAACK M D et al. Multi-mode to single-mode conversion in a 61 port Photonic Lantern[J]. Optics Express, 18, 4673-4678(2010).
[30] DAVIS K M, MIURA K, SUGIMOTO N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).
[31] SALIMINIA A, NGUYEN N, NADEAU M C et al. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses[J]. Journal of Applied Physics, 93, 3724-3728(2003).
[32] JOVANOVIC N, SPALENIAK I, GROSS S et al. Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide[J]. Optics Express, 20, 17029-17043(2012).
[33] LEON-SAVAL S, BIRKS T, BLAND-HAWTHORN J et al. Single-mode performance in multimode fibre devices[C], PDP25(2005).
[34] BLAND-HAWTHORN J, ENGLUND M, EDVELL G. New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating[J]. Optics Express, 12, 5902-5909(2004).
[35] MIZUNAMI T, DJAMBOVA T V, NIIHO T et al. Bragg gratings in multimode and few-mode optical fibers[J]. Journal of Lightwave Technology, 18, 230-235(2000).
[36] LEON-SAVAL S G, BIRKS T, JOLY N et al. Splice-free interfacing of photonic crystal fibers[J]. Optics Letters, 30, 1629-1631(2005).
[37] RUSSELL P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).
[38] MORTIMORE D B, ARKWRIGHT J W. Monolithic wavelength-flattened 1×7 single-mode fused fiber couplers: theory, fabrication, and analysis[J]. Applied Optics, 30, 650-659(1991).
[39] MORTIMORE D, ARKWRIGHT J. Monolithic wavelength-flattened 1×7 single-mode fused coupler[J]. Electronics Letters, 9, 606-607(1989).
[40] NOORDEGRAAF D, SKOVGAARD P M W, SANDBERG R H et al. Nineteen-port photonic lantern with multimode delivery fiber[J]. Optics Letters, 37, 452-454(2012).
[41] CONTENT R, BLAND-HAWTHORN J, ELLIS S et al. PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph[C], 9151, 91514W(2014).
[42] WOLF A, DOSTOVALOV A, BRONNIKOV K et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications[J]. Opto-Electronic Advances, 5, 210055(2022).
[43] BIRKS T A, DIEZ A, CRUZ J L et al. Fibres are looking up: optical fibre transition structures in astrophotonics[C], FTuU1(2010).
[44] BIRKS T A, MANGAN B J, DIEZ A et al. Multicore optical fibres for astrophotonics[C], JSIII2_1(2011).
[45] BLAND-HAWTHORN J, LAWRENCE J, ROBERTSON G et al. PIMMS: photonic integrated multimode microspectrograph[C], 7735, 317-325(2010).
[46] BLAND-HAWTHORN J, KERN P. Molding the flow of light: photonics in astronomy[J]. Physics Today, 65, 31-37(2012).
[47] HAYNES D M, GRIS-SANCHEZ I, EHRLICH K et al. New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy[C], 9151, 915155(2014).
[48] THOMSON R R, BROWN G, KAR A K et al. An integrated fan-out device for astrophotonics[C], PDPA3(2010).
[49] THOMSON R R, HARRIS R J, BIRKS T A et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics[J]. Optics Letters, 37, 2331-2333(2012).
[50] YEROLATSITIS S, GRIS-SÁNCHEZ I, BIRKS T. Adiabatically-tapered fiber mode multiplexers[J]. Optics Express, 22, 608-617(2014).
[51] WITKOWSKA A, LAI K, LEON-SAVAL S et al. All-fiber anamorphic core-shape transitions[J]. Optics Letters, 31, 2672-2674(2006).
[52] XI Xiaoming, SUN Guilin, CHEN Zilun et al. Photonic crystal fibers tapering based on the conventional taper rig[J]. Infrared and Laser Engineering, 41, 1481-1484(2012).
[53] ZHANG Chengdong, ZHOU Xuanfeng, CHEN Zilun et al. Low loss fusion splicing for seven-core photonic crystal fiber by selected air hole collapse technique[J]. Chinese Journal of Lasers, 41, 154-158(2014).
[54] NOLTE S, WILL M, BURGHOFF J et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics[J]. Applied Physics A, 77, 109-111(2003).
[55] THOMSON R R, KAR A K, ALLINGTON-SMITH J. Ultrafast laser inscription: an enabling technology for astrophotonics[J]. Optics Express, 17, 1963-1969(2009).
[56] THOMSON R R, BIRKS T A, LEON-SAVAL S G et al. Ultrafast laser inscription of an integrated multimode-to-single-modes waveguide transition for astrophotonics[C](2011).
[57] SAID A A, DUGAN M, BADO P et al. Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks[C], 5339, 194-204(2004).
[58] NASU Y, KOHTOKU M, HIBINO Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Optics Letters, 30, 723-725(2005).
[59] SPALENIAK I, JOVANOVIC N, GROSS S et al. Enabling photonic technologies for seeing-limited telescopes: fabrication of integrated photonic lanterns on a chip[C], 8450, 845015(2012).
[60] SPALENIAK I, JOVANOVIC N, GROSS S et al. Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition[J]. Optics Express, 21, 27197-27208(2013).
[61] HARRIS R J, MACLACHLAN D G, CHOUDHURY D et al. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy[J]. Monthly Notices of the Royal Astronomical Society, 450, 428-434(2015).
[62] MACLACHLAN D G, HARRIS R, CHOUDHURY D et al. Development of integrated “photonic-dicers” for reformatting the point-spread-function of a telescope[C], 9151, 91511W(2014).
[63] ARRIOLA A, CHOUDHURY D, THOMSON R R. New generation of photonic lanterns for mid-IR astronomy[C], 9151, 402-408(2014).
[64] ARRIOLA A, GROSS S, JOVANOVIC N et al. Low bend loss waveguides enable compact, efficient 3D photonic chips[J]. Optics Express, 21, 2978-2986(2013).
[65] MEANY T, GROSS S, JOVANOVIC N et al. Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm[J]. Applied Physics A, 114, 113-118(2014).
[66] JOVANOVIC N, SCHWAB C, CVETOJEVIC N et al. Enhancing stellar spectroscopy with extreme adaptive optics and photonics[J]. Publications of the Astronomical Society of the Pacific, 128, 121001(2016).
[67] JOVANOVIC N, BEICHMAN C, BLAKE C et al. Enabling the next generation of scientific discoveries by embracing photonic technologies[J](2019).
[68] TRINH C Q, ELLIS S C, BLAND-HAWTHORN J et al. GNOSIS: the first instrument to use fiber bragg gratings for oh suppression[J]. Astronomical Journal, 145, 51(2013).
[69] MOSLEY P J, GRIS-SÁNCHEZ I, STONE J M et al. Characterizing the variation of propagation constants in multicore fiber[J]. Optics Express, 22, 25689-25699(2014).
[70] ELLIS S C, MIN S S, LEON-SAVAL S G et al. On the origin of core-to-core variations in multi-core fibre Bragg gratings[C], 10706, 1377-1388(2018).
[71] LINDLEY E, MIN S S, LEON-SAVAL S et al. Demonstration of uniform multicore fiber Bragg gratings[J]. Optics Express, 22, 31575-31581(2014).
[72] BLAND-HAWTHORN J, MIN S S, LINDLEY E et al. Multicore fibre technology: the road to multimode photonics[C], 9912, 576-589(2016).
[73] CHAZELAS B, PEPE F, WILDI F et al. New scramblers for precision radial velocity: square and octagonal fibers[C], 7739, 1458-1466(2010).
[74] ROY A, HALVERSON S, MAHADEVAN S et al. Scrambling and modal noise mitigation in the Habitable Zone Planet Finder fiber feed[C], 9147, 1994-2000(2014).
[75] ELLIS S C, BLAND-HAWTHORN J, LAWRENCE J S et al. First demonstration of OH suppression in a high-efficiency near-infrared spectrograph[J]. Monthly Notices of the Royal Astronomical Society, 492, 2796-2806(2020).
[76] HUNTER T R, RAMSEY L W. Scrambling properties of optical fibers and the performance of a double scrambler[J]. Publications of the Astronomical Society of the Pacific, 104, 1244-1251(1992).
[77] PLAVCHAN P P, BOTTOM M, GAO P et al. Precision near-infrared radial velocity instrumentation Ⅱ: noncircular core fiber scrambler[C], 8864, 165-182(2013).
[78] HARRIS R J, LABADIE L, LEMKE U et al. Performance estimates for spectrographs using photonic reformatters[C], 9912, 1722-1729(2016).
[79] GRIS-SANCHEZ I, HAYNES D M, EHRLICH K et al. Multicore fibre photonic lanterns for precision radial velocity Science[J]. Monthly Notices of the Royal Astronomical Society, 475, 3065-3075(2018).
[80] HAYNES D M, GRIS-SANCHEZ I, BIRKS T A et al. Optical fiber modal noise suppression in the NIR region using Multicore Fiber and Photonic Lanterns[C], 10706, 1750-1759(2018).
[81] PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 17, S573-S577(2001).
[82] RAGAZZONI R. Pupil plane wavefront sensing with an oscillating prism[J]. Journal of Modern Optics, 43, 289-293(1996).
[83] RODDIER F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied optics, 27, 1223-1225(1988).
[84] KULCSAR C, SIVO G, H-FRAYNAUD et al. Vibrations in AO control: a short analysis of on-sky data around the world[C], 8447, 529-542(2012).
[85] SAUVAGE J F, FUSCO T, LAMB M et al. Tackling down the low wind effect on SPHERE instrument[C], 9909, 408-416(2016).
[86] MILLI J, KASPER M, BOURGET P et al. Low wind effect on VLT/SPHERE: impact, mitigation strategy, and results[C], 10703, 752-771(2018).
[87] SAUVAGE J F, FUSCO T, ROUSSET G et al. Calibration and precompensation of noncommon path aberrations for extreme adaptive optics[J]. Journal of the Optical Society of America A, 24, 2334-2346(2007).
[88] CORRIGAN M, HARRIS R J, THOMSON R R et al. Wavefront sensing using a photonic lantern[C], 9909, 1848-1855(2016).
[89] CORRIGAN M K, MORRIS T J, HARRIS R J et al. Demonstration of a photonic lantern low order wavefront sensor using an adaptive optics testbed[C], 10703, 1313-1320(2018).
[90] NORRIS B R M, WEI J, BETTERS C H et al. An all-photonic focal-plane wavefront sensor[J]. Nature Communications, 11, 5335(2020).
[91] CRUZ-DELGADO D, ALVARADO-ZACARIAS J C, COOPER M A et al. Photonic lantern tip/tilt detector for adaptive optics systems[J]. Optics Letters, 46, 3292-3295(2021).
[92] LIN J, JOVANOVIC N, FITZGERALD M P. Design considerations of photonic lanterns for diffraction-limited spectrometry[J]. Journal of the Optical Society of America B-Optical Physics, 38, A51-A63(2021).
[93] LIN J, XIN Y, NORRIS B et al. Exoplanet detectionwith photonic lanterns for focal-plane wavefront sensing and control[C], 12185, 758-777(2022).
[94] WRIGHT T A, YEROLATSITIS S, HARRINGTON K et al. All-fibre wavefront sensor[J]. Monthly Notices of the Royal Astronomical Society, 514, 5422-5428(2022).
[95] MACLACHLAN D G, HARRIS R J, GRIS-SANCHEZ I et al. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy[J]. Monthly Notices of the Royal Astronomical Society, 464, 4950-4957(2017).
[96] LEON-SAVAL S G, BETTERS C H, SALAZAR-GIL J R et al. Divide and conquer: an efficient solution to highly multimoded photonic lanterns from multicore fibres[J]. Optics Express, 25, 17530-17540(2017).
[97] EIKENBERRY S, BENTZ M, GONZALEZ A et al. PolyOculus: Low-cost Spectroscopy for the Community[J]. Bulletin of the American Astronomical Society, 51, 124(2019).
[98] MORAITIS C D, ALVARADO-ZACARIAS J C, AMEZCUA-CORREA R et al. Demonstration of high-efficiency photonic lantern couplers for PolyOculus[J]. Applied Optics, 60, D93-D99(2021).
[99] CHOUDHURY D, MCNICHOLL D K, REPETTI A et al. Computational optical imaging with a photonic lantern[J]. Nature Communications, 11, 5217(2020).
[100] SWEENEY D, NORRIS B R M, TUTHILL P et al. Learning the lantern: neural network applications to broadband photonic lantern modeling[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 7, 028007(2021).
Get Citation
Copy Citation Text
Zijian HAN, Xiangyan YUAN. Technique and Astronomical Applications of Photonic Lanterns(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 0552204
Category: Special Issue for Advanced Science and Technology of Astronomical Optics
Received: Mar. 8, 2023
Accepted: May. 8, 2023
Published Online: Jul. 19, 2023
The Author Email: Zijian HAN (zjhan@niaot.ac.cn)