Journal of Synthetic Crystals, Volume. 50, Issue 3, 497(2021)

Photogalvanic Effect of Doped Monolayer WS2 Based on First-Principles

YUAN Qiuming1、*, CHEN Yan2, XU Zhonghui1, LUO Bing1, and CHEN Zhen1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(28)

    [1] [1] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275.

    [2] [2] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501.

    [3] [3] ZHANG H. Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.

    [4] [4] XU M S, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798.

    [5] [5] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126.

    [6] [6] DING Y, WANG Y L, NI J, et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers[J]. Physica B: Condensed Matter, 2011, 406(11): 2254-2260.

    [7] [7] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al. Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181.

    [8] [8] KANG K, XIE S, HUANG L, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660.

    [9] [9] SONG J G, PARK J, LEE W, et al. Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition[J]. ACS Nano, 2013, 7(12): 11333-11340.

    [10] [10] CAO Q, DAI Y W, XU J, et al. Realizing stable p-type transporting in two-dimensional WS2 films[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18215-18221.

    [11] [11] FAN Y, ZHOU Y Q, WANG X C, et al. Photoinduced Schottky barrier lowering in 2D monolayer WS2 photodetectors[J]. Advanced Optical Materials, 2016, 4(10): 1573-1581.

    [12] [12] NAYAK P K, YEH C H, CHEN Y C, et al. Layer-dependent optical conductivity in atomic thin WS2 by reflection contrast spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16020-16026.

    [13] [13] WU J H, ZHAI F, LU J Q, et al. Strain-tunable photogalvanic effect in phosphorene[J]. Materials Today Communications, 2020, 24: 101154.

    [14] [14] KARCH J, TARASENKO S A, IVCHENKO E L, et al. Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors[J]. Physical Review B, 2011, 83(12): 121312.

    [15] [15] DHARA S, MELE E J, AGARWAL R. Voltage-tunable circular photogalvanic effect in silicon nanowires[J]. Science, 2015, 349(6249): 726-729.

    [16] [16] ZENG X L, YU J L, CHENG S Y, et al. Temperature dependence of photogalvanic effect in GaAs/AlGaAs two-dimensional electron gas at interband and intersubband excitation[J]. Journal of Applied Physics, 2017, 121(19): 193901.

    [17] [17] TIAN J, HONG S, MIOTKOWSKI I, et al. Observation of current-induced, long-lived persistent spin polarization in a topological insulator: a rechargeable spin battery[J]. Science Advances, 2017, 3(4): e1602531.

    [18] [18] XIE YQ, ZHANG L, ZHU Y, et al. Photogalvanic effect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45): 455202.

    [19] [19] CHEN J Z, HU Y B, GUO H. First-principles analysis of photocurrent in graphene PN junctions[J]. Physical Review B, 2012, 85(15): 155441.

    [20] [20] LUO W M, SHAO Z G, YANG M. Photogalvanic effect in nitrogen-doped monolayer MoS2 from first principles[J]. Nanoscale Research Letters, 2019, 14(1): 380.

    [21] [21] LUO W M, SHAO Z G, QIN X F, et al. Photogalvanic effect in monolayer WSe2-MoS2 lateral heterojunction from first principles[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115: 113714.

    [22] [22] FAN X L, AN Y R, GUO W J. Ferromagnetism in transitional metal-doped MoS2 monolayer[J]. Nanoscale Research Letters, 2016, 11(1): 1-10.

    [23] [23] LU S, LI C, ZHAO Y F, et al. Tunable redox potential of nonmetal doped monolayer MoS2: first principle calculations[J]. Applied Surface Science, 2016, 384: 360-367.

    [24] [24] SALAMI N, SHOKRI A A, ELAHI S M. Tunable electronic and magnetic properties of a MoS2 monolayer with vacancies under elastic planar strain: ab initio study[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 77: 138-143.

    [27] [27] WALDRON D, TIMOSHEVSKII V, HU Y, et al. First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers[J]. Physical Review Letters, 2006, 97(22): 226802.

    [28] [28] GUAN H M, TANG N, XU X L, et al. Photon wavelength dependent valley photocurrent in multilayer MoS2[J]. Physical Review B, 2017, 96(24): 241304.

    [29] [29] YOUNGBLOOD N, LI M. Ultrafast photocurrent measurements of a black phosphorus photodetector[J]. Applied Physics Letters, 2017, 110(5): 051102.

    [30] [30] GRAHAM R, MILLER C, OH E, et al. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors[J]. Nano Letters, 2011, 11(2): 717-722.

    Tools

    Get Citation

    Copy Citation Text

    YUAN Qiuming, CHEN Yan, XU Zhonghui, LUO Bing, CHEN Zhen. Photogalvanic Effect of Doped Monolayer WS2 Based on First-Principles[J]. Journal of Synthetic Crystals, 2021, 50(3): 497

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 31, 2020

    Accepted: --

    Published Online: Apr. 15, 2021

    The Author Email: Qiuming YUAN (yuanqiuming406257@163.com)

    DOI:

    CSTR:32186.14.

    Topics