Semiconductor Optoelectronics, Volume. 45, Issue 5, 693(2024)

Slow-wave High-speed Electro-optic Modulator Based on Barium Titanate on An Insulator at A Wavelength of 2 μm

HUANG Tong1, MA Ruyuan1, LIU Yingxuan1, XU Tianqi1, QIU Yang1, ZHAO Xingyan1, ZHENG Shaonan1, ZHONG Qize1, DONG Yuan1,2, and HU Ting1
Author Affiliations
  • 1School of Microelectronics, Shanghai University, Shanghai 201800, CHN
  • 2Shanghai Collaborative Innovation Center of Intelligent Sensing Chip Technology, Shanghai University, Shanghai 201800, CHN
  • show less
    References(25)

    [1] [1] Cao W, Nedeljkovic M, Liu S H, et al. 25 Gbit/S silicon based modulators for the 2 m wavelength band[C]// 2020 Optical Fiber Communications Conference and Exhibition, 2020: 1-3.

    [2] [2] Cao W, Hagan D, Thomson D J, et al. High-speed silicon modulators for the 2 m wavelength band[J]. Optica, 2018, 5(9): 1055-1062.

    [3] [3] Hagan D E, Ye M, Wang P, et al. High-speed performance of a TDFA-band micro-ring resonator modulator and detector[J]. Opt. Express, 2020, 28(11): 16845-16856.

    [4] [4] Yoshimura T. Design and evaluation of organic nonlinear optical materials with a large Pockels effect[J]. Molecular Crystals and Liquid Crystals, 1990, 182(1): 43-50.

    [5] [5] Theofanous N G, Aillerie M, Fontana M D, et al. A frequency doubling electro-optic modulation system for Pockels effect measurements: Application in LiNbO3 [J]. Rev. Sci. Instrum., 1997, 68(5): 2138-2143.

    [6] [6] Takizawa K, Haraguchi K, Jin L, et al. Analysis of the quadratic retardation induced by the Pockels, Kerr, and inverse piezoelectric effects in an x-cut y-propagation LiNbO3 [J]. Jpn. J. Appl. Phys., 2014, 53(5): 052601.

    [7] [7] Abel S, Eltes F, Ortmann J E, et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon[J]. Nature Mater., 2018, 18(1): 42-47.

    [8] [8] Dong Z, Raju A, Posadas A B, et al. Monolithic barium titanate modulators on silicon-on-insulator substrates[J]. ACS Photonics, 2023, 10(12): 4367-4376.

    [9] [9] Zgonik M, Bernasconi P, Duelli M, et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals[J]. Phys. Rev. B, 1994, 50(9): 5941.

    [10] [10] Weis R S, Gaylord T K. Lithium niobate: Summary of physical properties and crystal structure[J]. Appl. Phys. A, 1985, 37: 191-203.

    [11] [11] Jin T, Lin P T. Efficient mid-infrared electro-optical waveguide modulators using ferroelectric barium titanate[J]. IEEE J. Sel. Top. in Quantum Electron., 2020, 26(5): 1-7.

    [12] [12] Last J T. Infrared absorption studies on barium titanate and related crystals[D]. Cambridge: Massachusetts Institute of Technology, 1956: 4-80.

    [13] [13] Kharel P, Reimer C, Luke K, et al. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes[J]. Optica, 2021, 8(3): 357-363.

    [14] [14] Jaeger N A F, Lee Z K F. Slow-wave electrode for use in compound semiconductor electrooptic modulators[J]. IEEE J. Quantum Electron., 1992, 28(8): 1778-1784.

    [15] [15] Ding R, Liu Y, Ma Y, et al. High-speed silicon modulator with slow-wave electrodes and fully independent differential drive[J]. J. Lightwave Technol., 2014, 32(12): 2240-2247.

    [16] [16] Bernasconi P, Zgonik M, Gnter P. Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals[J]. J. Appl. Phys., 1995, 78(4): 2651-2658.

    [17] [17] Wemple S H, Didomenico J M. Electrooptical and nonlinear optical properties of crystals[J]. Appl. Solid State Sci., 1972, (3): 263-383.

    [18] [18] Nelson D F. Piezooptic and Electrooptic Constants[M]. Heidelberg: Springer, 1996: 164-320.

    [19] [19] Castera P, Tulli D, Gutierrez A M, et al. Influence of BaTiO3 ferroelectric orientation for electro-optic modulation on silicon[J]. Opt. Express, 2015, 23(12): 15332-15342.

    [20] [20] Park Y B, Ruglovsky J L, Atwater H A. Microstructure and properties of single crystal BaTiO3 thin films synthesized by ion implantation-induced layer transfer[J]. Appl. Phys. Lett., 2004, 85(3): 455-457.

    [21] [21] Eltes F, Villarreal G E, Caimi D, et al. An integrated optical modulator operating at cryogenic temperatures[J]. Nature Mater., 2020, 19(11): 1164-1168.

    [22] [22] Subramaniam C, Yamada T, Kobashi K, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nature Commun., 2013, 4: 2202.

    [23] [23] Zhu D, Shao L, Yu M, et al. Integrated photonics on thin-film lithium niobate[J]. Adv. Opt. Photonics, 2021, 13(2): 242-352.

    [24] [24] Chen G, Chen K, Gan R, et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode[J]. APL Photonics, 2022, 7(2): 026103.

    [25] [25] Hammerstad E, Jensen O. Accurate models for microstrip computer-aided design[C]// 1980 IEEE MTT-S International Microwave Symposium Digest, 1980: 407-409.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Tong, MA Ruyuan, LIU Yingxuan, XU Tianqi, QIU Yang, ZHAO Xingyan, ZHENG Shaonan, ZHONG Qize, DONG Yuan, HU Ting. Slow-wave High-speed Electro-optic Modulator Based on Barium Titanate on An Insulator at A Wavelength of 2 μm[J]. Semiconductor Optoelectronics, 2024, 45(5): 693

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 28, 2024

    Accepted: Feb. 13, 2025

    Published Online: Feb. 13, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2024042804

    Topics