Laser & Optoelectronics Progress, Volume. 59, Issue 11, 1100004(2022)

Research Status and Progress of Probabilistic Shaping Techniques in Optical Communication

Xiang Liu1,2, Jiao Zhang1,2、*, Min Zhu1,2、**, Bingchang Hua2, Yuancheng Cai1,2, Mingzheng Lei2, Yucong Zou2, and Aijie Li2
Author Affiliations
  • 1National Mobile Communication Research Laboratory, Southeast University, Nanjing 210096, Jiangsu , China
  • 2Purple Mountain Laboratories, Nanjing 211111, Jiangsu , China
  • show less
    Figures & Tables(22)
    Capacity of the ideal AWGN channel with Gaussian inputs and with equiprobable M-PAM inputs[5]
    16QAM probabilistic shaping. (a) 16QAM; (b) PS-16QAM
    Schematic diagram of PS-16QAM probabilistic shaping. (a) Probability distribution; (b) signal constellation
    Basic framework of probabilistic shaping technology
    System symbols and performance indicators[74-76]
    CCDM implementation block diagram [23]. (a) Principle block diagram; (b) schematic drawings
    PS-8ASK with three parameter values v
    Effect of changing shaping factor v on GMI of transmitted and received symbols
    Arithmetic coding probabilistic shaping scheme. (a) PAS scheme[24]; (b) PDM /MPDM scheme[49]; (c) 2D-DM scheme[56]
    Influence degree of arithmetic coding probabilistic shaping scheme index
    Arithmetic coding PS performance parameter index comparison
    Performance chart[28]. (a) AIR and SNR; (b) FER and SNR
    Symbol-level labeling PS scheme. (a) Outer maps to the inner layer[64]; (b) set partition[60-61]
    Schematic of probabilistic shaping based on symbol-level labeling[9]
    Non-uniform signal designed for PS scheme. (a) Huffman code[66] ; (b) bisection-based [67]
    • Table 1. Comparison of characteristics and shortcomings of AC probabilistic shaping scheme

      View table

      Table 1. Comparison of characteristics and shortcomings of AC probabilistic shaping scheme

      AC shaping schemeRef.CharacteristicShortcoming
      Serial structureCCDM23Lower complexity,asymptotically optimalHigh latency,rate loss
      PAS24Rate adaption,lower BERHigh complexity,rate loss
      Parallel structurePDM44High throughput,lower complexityA gap to the MB distribution
      MPDM49Flexible output composition,lower rate lossHigh hardware requirements
      MDDM56Approaching MB,multi-dimensionalHigh hardware requirements
    • Table 2. PAS related parameter rate

      View table

      Table 2. PAS related parameter rate

      SignalRpsRfecη=mRpsRfec
      2m-ASKRdmm-1+γm-1+γm-1+γmRdmm-1+γ
      2m-QAMRdmm-2+2γm-2+2γm-2+2γmRdmm-2+2γ
      2m-NDRdmm-N+Nγm-N+Nγm-N+NγmRdmm-N+Nγ
    • Table 3. Gaps of uniform ASK and PS to capacity C

      View table

      Table 3. Gaps of uniform ASK and PS to capacity C

      ConstellationRate /bitCapacity C SNR /dBUniform SNR /dBGap /dB

      XΩ

      SNR /dB

      Gap /dBShaping gain /dB
      4-ASK14.77125.11810.34694.81800.04680.3001
      8-ASK211.760912.61870.857811.84250.08160.7762
      16-ASK317.993419.16811.174718.09100.09761.0771
      32-ASK424.065425.41401.348624.17060.10521.2434
      64-ASK530.098831.53841.439630.20780.10901.3306
    • Table 4. Rate loss under different block length n

      View table

      Table 4. Rate loss under different block length n

      Architecturekk/nH(A˜)/H(A¯)Rloss
      CCDM/PAS3671.69911.74900.0499
      3672.23782.31320.0754
      3676.79636.95230.1560
      MPDM3741.73151.74900.0175
      3742.22622.27270.0465
      3746.92596.99130.0654
      Sphere3741.73151.74590.0133
      3742.22622.24960.0234
      3746.92596.96840.0425
    • Table 5. Research of PS technology in optical fiber transmission system

      View table

      Table 5. Research of PS technology in optical fiber transmission system

      Optical fiber transmission system
      Ref.InstitutionSignalDistance /kmRateCharacteristic
      19University of Arizona8/16/32QAM10012.5 GbaudSuperior performance
      29Beijing University of Posts and TelecommunicationsPAM8228 Gb/sLow complexity and improve BER
      33Technical University of Munich16/64QAMB2B-Higher sensitivity gains and close to the gap to capacity
      34Huazhong University of Science and Technology256QAM7550.2 Gb/sSuperior net date rate and suitable for multicarrier systems
      71Fudan University32QAM1108.29 Gb/sBetter receiver sensitivity gain
      83Huaqiao UniversityPAM82016.8 GbaudFewer PS redundancy
      84Huawei Technologies/China Telecom Beijing Research Institute16QAM1142200 Gb/sReal-time and improve performance,energy-efficiency
    • Table 6. Research of PS technology in ROF transmission system

      View table

      Table 6. Research of PS technology in ROF transmission system

      ROF transmission system
      Ref.InstitutionSignalDistance /mRate /(Gb·s-1Characteristic
      51Zhejiang University16QAM-OFDM20>100Ultrahigh data rate
      54Hunan University64QAM0.51.81Flexibility and small capacity granularity
      85Fudan University512QAM、128QAM1208.4Increase the maximal AIR
      86Beijing University of Posts and Telecommunications16QAM4012.144BER performance,higher bit rate
      87University of Antioquia8/16QAM-10

      Better performance、longer

      transmission distance

      88Georgia Institude of Technology16QAM-OFDM425.9First experimental demonstration
    • Table 7. Research of PS technology in VLC transmission system

      View table

      Table 7. Research of PS technology in VLC transmission system

      VLC transmission system
      Ref.TxRxSignalRateInstitution
      40LEDPDPAM42 Gb/sBeijing University of Posts and Telecommunications
      90LEDPD256QAM204.1 Mb/sHuazhong University of Science and Technology
      91LEDPD64QAM50.75 Mb/sUniversity of Shanghai for Science and Technology
      92LDAPDDMT10.23 Gb/sNational Taiwan University/Fudan University
      93LEDPIN16QAM1.70 Gb/sFudan University
    Tools

    Get Citation

    Copy Citation Text

    Xiang Liu, Jiao Zhang, Min Zhu, Bingchang Hua, Yuancheng Cai, Mingzheng Lei, Yucong Zou, Aijie Li. Research Status and Progress of Probabilistic Shaping Techniques in Optical Communication[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1100004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jun. 1, 2021

    Accepted: Jul. 15, 2021

    Published Online: Jun. 9, 2022

    The Author Email: Jiao Zhang (jiaozhang@seu.edu.cn), Min Zhu (minzhu@seu.edu.cn)

    DOI:10.3788/LOP202259.1100004

    Topics