Chinese Journal of Lasers, Volume. 40, Issue 1, 101002(2013)
Novel Photonic Functional Devices based on Liquid-Filling Microstructured Optical Fibers
[1] [1] R. He, P. Sazio, A. Peacock et al.. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres[J]. Nature Photonics, 2012, 6(3): 174~179
[2] [2] J. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847~851
[3] [3] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362
[4] [4] J. Knight, T. Birks, P. Russell et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547~1549
[5] [5] J. Knight, J. Broeng, T. Birks et al.. Photonic band gap guidance in optical fibers[J]. Science, 1998, 282(5393): 1476~1478
[6] [6] T. Birks, J. Knight, P. Russell. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961~963
[7] [7] J. Knight, T. Birks, R. Cregan et al.. Large mode area photonic crystal fibre[J]. Electron. Lett., 1998, 34(13): 1347~1348
[8] [8] A. Ortigosa-Blanch, J. Knight, W. Wadsworth et al.. Highly birefringent photonic crystal fibers[J]. Opt. Lett., 2000, 25(18): 1325~1327
[9] [9] K. Saitoh, M. Koshiba. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Opt. Express, 2004, 12(10): 2027~2032
[10] [10] T. Birks, D. Mogilevtsev, J. Knight et al.. Dispersion compensation using single-material fibers[J]. IEEE Photon. Technol. Lett., 1999, 11(6): 674~676
[11] [11] R. Tang, J. Lasri, P. Devgan et al.. Microstructure-fibre-based optical parametric amplifier with gain slope of ~200 dB/W/km in the telecom range[J]. Electron. Lett., 2003, 39(2): 195~196
[12] [12] Geng Pengcheng, Zhang Weigang, Zhang Shanshan et al.. Design of new type single-polarization single-mode photonic crystal fiber with wide bandwidth[J]. Acta Optica Sinica, 2011, 31(7): 0706001
[13] [13] J. Shephard, J. Jones, D. Hand et al.. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers[J]. Opt. Express, 2004, 12(4): 717~723
[14] [14] Xi Xiaoming, Chen Zilun, Sun Guilin et al.. Dual-wavelength pumped supercontinuum generation in tapered photonic crystal fibers[J]. Acta Optica Sinica, 2011, 31(2): 0206001
[15] [15] A. Agrawal, N. Kejalakshmy, B. Rahman et al.. Soft glass equiangular spiral photonic crystal fiber for supercontinuum generation[J]. IEEE Photon. Technol. Lett., 2009, 21(22): 1722~1724
[16] [16] S. Afshar, S. Warren-Smith, T. Monro. Enhancement of fluorescence-based sensing using microstructured optical fibres[J]. Opt. Express, 2007, 15(26): 17891~17901
[17] [17] T. Monro, W. Belardi, K. Furusawa et al.. Sensing with microstructured optical fibres[J]. Measure. Sci. & Technol., 2001, 12(7): 854~858
[18] [18] W. Macpherson, E. Rigg, J. Jones et al.. Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity[J]. J. Lightwave Technol., 2005, 23(3): 1227~1231
[20] [20] B. Eggleton, C. Kerbage, P. Westbrook et al.. Microstructured optical fiber devices[J]. Opt. Express, 2001, 9(13): 698~713
[21] [21] A. Samoc. Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared[J]. J. Appl. Phys., 2003, 94(9): 6167~6174
[22] [22] C. Kerbage, P. Steinvurzel, P. Reyes et al.. Highly tunable birefringent microstructured optical fiber[J]. Opt. Lett., 2002, 27(10): 842~844
[23] [23] B. Kuhlmey, B. Eggleton, D. Wu. Fluid-filled solid-core photonic bandgap fibers[J]. J. Lightwave Technol., 2009, 27(11): 1617~1630
[24] [24] A. Lorenz, R. Schuhmann, H. Kitzerow. Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model[J]. Opt. Express, 2010, 18(4): 3519~3530
[25] [25] M. Haakestad, T. Alkeskjold, M. Nielsen et al.. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2005, 17(4): 819~821
[26] [26] A. Candiani, M. Konstantaki, W. Margulis et al.. A spectrally tunable microstructured optical fibre Bragg grating utilizing an infiltrated ferrofluid[J]. Opt. Express, 2010, 18(24): 24654~24660
[27] [27] Y. P. Miao, B. Liu, K. L. Zhang et al.. Temperature tunability of photonic crystal fiber filled with Fe3O4 nanoparticle fluid[J]. Appl. Phys. Lett., 2011, 98(2): 021103
[28] [28] A. Sharma, R. Jha, B. Gupta. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review[J]. IEEE Sensors Journal, 2007, 7(8): 1118~1129
[29] [29] Y. Zhang, C. Gu, A. Schwartzberg et al.. Surface-enhanced Raman scattering sensor based on D-shaped fiber[J]. Appl. Phys. Lett., 2005, 87(12): 123105
[30] [30] A. Sutherland. Quantum dots as luminescent probes in biological systems[J]. Current Opinion in Solid State and Materials Science, 2002, 6(4): 365~370
[31] [31] M. Kazes, D. Lewis, Y. Ebenstein et al.. Lasing from semiconductor quantum rods in a cylindrical microcavity[J]. Advanced Materials, 2002, 14(4): 317~321
[32] [32] S. Kawanishi, T. Komukai, M. Ohmori et al.. Photoluminescence of semiconductor nanocrystal quantum dots at 1550 nm wavelength in the core of photonic bandgap fiber[C]. Lasers and Eletcro-Optics Conference, 2007, Baltimore, Maryland, 1~2
[33] [33] K. Nielsen, D. Noordegraaf, T. Srensen et al.. Selective filling of photonic crystal fibres[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(8): 13~20
[34] [34] X. Zhang, R. Wang, F. Cox et al.. Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers[J]. Opt. Express, 2007, 15(24): 16270~16278
[35] [35] Y. Huang, Y. Xu, A. Yariv. Fabrication of functional microstructured optical fibers through a selective-filling technique[J]. Appl. Phys. Lett., 2004, 85(22): 5182~5184
[36] [36] L. Xiao, W. Jin, M. Demokan et al.. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Opt. Express, 2005, 13(22): 9014~9022
[37] [37] Y. Wang, X. Tan, W. Jin et al.. Improved bending property of half-filled photonic crystal fiber[J]. Opt. Express, 2010, 18(12): 12197~12202
[38] [38] W. Qian, C. Zhao, Y. Wang et al.. Partially liquid-filled hollow-core photonic crystal fiber polarizer[J]. Opt. Lett., 2011, 36(16): 3296~3298
[39] [39] B. Cumpston, S. Ananthavel, S. Barlow et al.. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51~54
[40] [40] M. Deubel, G. Freymann, M. Wegener et al.. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 2004, 3(7): 444~447
[41] [41] T. Gissibl, M. Vieweg, M. Vogel et al.. Preparation and characterization of a large mode area liquid-filled photonic crystal fiber: transition from isolated to coupled spatial modes[J]. Appl. Phys. B: Lasers and Optics, 2012, 106(3): 1~7
[42] [42] F. Wang, W. Yuan, O. Hansen et al.. Selective filling of photonic crystal fibers using focused ion beam milled microchannels[J]. Opt. Express, 2011, 19(18): 17585~17590
[43] [43] C. Kerbage, A. Hale, A. Yablon et al.. Integrated all-fiber variable attenuator based on hybrid microstructure fiber[J]. Appl. Phys. Lett., 2001, 79(19): 3191~3193
[44] [44] T. Larsen, A. Bjarklev, D. Hermann et al.. Optical devices based on liquid crystal photonic bandgap fibres[J]. Opt. Express, 2003, 11(20): 2589~2596
[45] [45] F. Du, Y. Lu, S. Wu. Electrically tunable liquid-crystal photonic crystal fiber[J]. Appl. Phys. Lett., 2004, 85(12): 2181~2183
[46] [46] J. Lgsgaard, T. Alkeskjold. Designing a photonic bandgap fiber for thermo-optic switching[J]. J. Opt. Soc. Am. B, 2006, 23(5): 951~957
[47] [47] Y. Wang, W. Jin, L. Jin et al.. Optical switch based on a fluid-filled photonic crystal fiber Bragg grating[J]. Opt. Lett., 2009, 34(23): 3683~3685
[48] [48] Y. Wang, H. Bartelt, W. Ecke et al.. Thermo-optic switching effect based on fluid-filled photonic crystal fiber[J]. IEEE Photon. Technol. Lett., 2010, 22(3): 164~166
[49] [49] Y. Wang, X. Tan, W. Jin et al.. Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications[J]. Opt. Lett., 2010, 35(1): 88~90
[50] [50] M. Vieweg, S. Pricking, T. Gissibl et al.. Tunable ultrafast nonlinear optofluidic coupler[J]. Opt. Lett., 2012, 37(6): 1058~1060
[51] [51] A. Abramov, B. Eggleton, J. Rogers et al.. Electrically tunable efficient broad-band fiber filter[J]. IEEE Photon. Technol. Lett., 1999, 11(4): 445~447
[52] [52] P. Steinvurzel, B. Eggleton, C. Sterke et al.. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre[J]. Electron. Lett., 2005, 41(8): 463~464
[53] [53] L. Scolari, T. Alkeskjold, A. Bjarklev. Tunable Gaussian filter based on tapered liquid crystal photonic bandgap fibre[J]. Electron. Lett., 2006, 42(22): 1270~1271
[54] [54] J. Du, Y. Liu, Z. Wang et al.. Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges[J]. Appl. Opt., 2008, 47(29): 5321~5324
[55] [55] T. Alkeskjold, J. Lgsgaard, A. Bjarklev et al.. All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers[J]. Opt. Express, 2004, 12(24): 5857~5871
[56] [56] V. Hsiao, C. Ko. Light-controllable photoresponsive liquid-crystal photonic crystal fiber[J]. Opt. Express, 2008, 16(17): 12670~12676
[57] [57] P. Zu, C. Chan, L. Siang et al.. Magneto-optic fiber Sagnac modulator based on magnetic fluids[J]. Opt. Lett., 2011, 36(8): 1425~1427
[58] [58] X. Yang, Y. Liu, F. Tian et al.. Optical fiber modulator derivates from hollow optical fiber with suspended core[J]. Opt. Lett., 2012, 37(11): 2115~2117
[59] [59] A. Sharkawy, D. Pustai, S. Shi et al.. Modulating dispersion properties of low index photonic crystal structures using microfluidics[J]. Opt. Express, 2005, 13(8): 2814~2827
[60] [60] C. Yu, J. Liou, S. Huang et al.. Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation[J]. Opt. Express, 2008, 16(7): 4443~4451
[61] [61] J. Hsu, G. Ye. Dispersion ultra-strong compensating fiber based on a liquid-filled hybrid structure of dual-concentric core and depressed-clad photonic crystal fiber[J]. J. Opt. Soc. Am. B, 2012, 29(8): 2021~2028
[62] [62] A. Czapla, T. Wolinski, S. Ertman et al.. Sensing apolications of photonic crystal fibers infiltrated with liquid crystals[C]. Instrumentation and Measurement Technology Conference, 2007, Poland, 1~5
[63] [63] D. Wu, B. Kuhlmey, B. Eggleton. Ultrasensitive photonic crystal fiber refractive index sensor[J]. Opt. Lett., 2009, 34(3): 322~324
[64] [64] T. Han, Y. Liu, Z. Wang et al.. Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor[J]. Opt. Lett., 2010, 35(12): 2061~2063
[65] [65] H. Lee, M. Schmidt, P. Uebel et al.. Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel[J]. Opt. Express, 2011, 19(9): 8200~8207
[67] [67] Y. Yu, X. Li, X. Hong et al.. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling[J]. Opt. Express, 2010, 18(15): 15383~15388
[68] [68] Y. Xu, X. Chen, Y. Zhu. High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials[J]. Sensors, 2008, 8(3): 1872~1878
[69] [69] Wang Ruoqi, Yao Jianquan, Zhou Rui et al.. Research of photonic crystal fiber temperature sensor with mixture liquid filling[J]. Journal of Optoelectronics·Laser, 2011, 22(11): 1609~1612
[70] [70] A. Hassani, M. Skorobogatiy. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Opt. Express, 2006, 14(24): 11616~11621
[71] [71] B. Gauvreau, A. Hassani, M. Fehri et al.. Photonic bandgap fiber-based surface plasmon resonance sensors[J]. Opt. Express, 2007, 15(18): 11413~11426
[72] [72] X. Yu, Y. Zhang, S. Pan et al.. A selectively coated photonic crystal fiber based surface plasmon resonance sensor[J]. J. Opt., 2010, 12(1): 015005
[73] [73] H. Yan, C. Gu, C. Yang et al.. Hollow core photonic crystal fiber surface-enhanced Raman probe[J]. Appl. Phys. Lett., 2006, 89(20): 204101
[74] [74] Y. Zhang, C. Shi, C. Gu et al.. Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering[J]. Appl. Phys. Lett., 2007, 90(19):193504
[75] [75] A. Peacock, A. Amezcua-Correa, J. Yang et al.. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions[J]. Appl. Phys. Lett., 2008, 92(14): 141113
[76] [76] X. Yang, C. Shi, D. Wheeler et al.. High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering[J]. J. Opt. Soc. Am. A, 2010, 27(5): 977~984
[77] [77] D. Noordegraaf, L. Scolari, J. Lgsgaard et al.. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers[J]. Opt. Express, 2007, 15(13): 7901~7912
[79] [79] L. Rindorf, O. Bang. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating[J]. Opt. Lett., 2008, 33(6): 563~565
[80] [80] J. Du, Y. Liu, Z. Wang et al.. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused[J]. Opt. Lett., 2008, 33(19): 2215~2217
[81] [81] W. Qian, C. Zhao, S. He et al.. High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror[J]. Opt. Lett., 2011, 36(9): 1548~1550
[82] [82] R. Wang, J. Yao, Y. Miao et al.. Thermo-optic switch based on fiuid-filled photonic crystal fiber[J]. Optoelectronics Letters, 2012, 8(6): 430~432
[83] [83] Meng Qingying, Ren Guangjun, Li Jinghui et al.. Experimental study of reflection-type liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements[J]. Journal of Optoelectronics·Laser, 2012, 23(9): 1713~1716
[84] [84] L. Lü, G. Ren, B. Liu et al.. Temperature influence on propagation characteristics of liquid crystal photonic crystal fiber of terahertz wave[J]. Journal of Optoelectronics and Advanced Materials, 2011, 13(7): 755~759
[85] [85] P. Bing, Z. Li, J. Yao et al.. A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core[J]. Mod. Phys. Lett. B, 2012, 26(13): 1250082
[86] [86] P. Bing, J. Yao, Y. Lu et al.. A surface-plasmon-resonance sensor based on photonic-crystal-fiber with large size microfluidic channels[J]. Opt. Appl., 2012, 42(3): 1~9
[87] [87] Y. Lu, C. Hao, B. Wu et al.. Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments[J]. Sensors, 2012, 12(9): 12016~12025
[88] [88] Di Zhigang, Yao Jianquan, Zhang Peipei et al.. Simulation and optimization of SERS effect in nano Ag substractes[J]. Laser & Infrared, 2011, 41(8): 850~855
Get Citation
Copy Citation Text
Yao Jianquan, Wang Ran, Miao Yinping, Lu Ying, Zhao Xiaolei, Jing Lei. Novel Photonic Functional Devices based on Liquid-Filling Microstructured Optical Fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 101002
Category: laser devices and laser physics
Received: Jul. 30, 2012
Accepted: --
Published Online: Dec. 12, 2012
The Author Email: Jianquan Yao (jqyao1939129@yahoo.com.cn)