Acta Optica Sinica, Volume. 44, Issue 7, 0716001(2024)
Fabrication and Mid-Infrared Laser Transmission Performance of Ultra-Low Loss Chalcogenide Glass Fibers
[1] Shabahang S, Tan F A, Perlstein J D et al. Robust multimaterial chalcogenide fibers produced by a hybrid fiber-fabrication process[J]. Optical Materials Express, 7, 2336-2345(2017).
[2] Liang X L, Zhong M H, Xu T S et al. Mid-infrared single-mode Ge-As-S fiber for high power laser delivery[J]. Journal of Lightwave Technology, 40, 2151-2156(2022).
[3] Sincore A, Cook J, Tan F et al. High power single-mode delivery of mid-infrared sources through chalcogenide fiber[J]. Optics Express, 26, 7313-7323(2018).
[4] Sanghera J S, Busse L E, Aggarwal I D et al. Infrared fibers for defense against MANPAD systems[J]. Proceedings of SPIE, 5781, 7-14(2005).
[5] Sun H Y, Xie X, Lu X. Design of flexible infrared optical imaging system based on optical fiber transmission[J]. Electro-Optic Technology Application, 36, 11-14(2021).
[6] Standel R R, Hendrickson R E. Infrared fiber optics techniques[J]. Infrared Physics, 3, 223-227(1963).
[7] Yang K Y, Sun W L, Sheng J K et al. All solid-state chalcogenide Bragg fiber based on compensated-stacking extrusion[J]. Chinese Journal of Lasers, 51, 0206006(2024).
[8] Zhang H, Guo H T, Xu Y T et al. Research progress in chalcogenide glass fibers for infrared laser delivery[J]. Chinese Journal of Lasers, 49, 0101007(2022).
[9] Dianov E M, Petrov M Y, Plotnichenko V G et al. Estimate of the minimum optical losses in chalcogenide glasses[J]. Soviet Journal of Quantum Electronics, 12, 498-499(1982).
[12] He C J, Xiao X S, Xu Y T et al. Numerical and experimental investigations on the propagation property of a mid-infrared 7×1 multimode fiber combiner[J]. Optics Express, 31, 22113-22126(2023).
[13] Qi S S, Li Y B, Huang Z X et al. Flexible chalcogenide glass large-core multimode fibers for hundred-watt-level mid-infrared 2-5 µm laser transmission[J]. Optics Express, 30, 14629-14644(2022).
[14] Shiryaev V S, Churbanov M F. Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics[J]. Journal of Non-Crystalline Solids, 475, 1-9(2017).
[15] Churbanov M F, Skripachev I V, Snopatin G E et al. The problems of optical loss reduction in arsenic sulfide glass IR fibers[J]. Optical Materials, 102, 109812(2020).
[16] Devyatykh G G, Churbanov M F, Scripachev I V et al. Middle infrared As-S, As-Se, Ge-As-Se chalcogenide glass fibers[J]. International Journal of Optoelectronics, 7, 237-254(1992).
[17] Nguyen V Q, Sanghera J S, Pureza P et al. Fabrication of arsenic selenide optical fiber with low hydrogen impurities[J]. Journal of the American Ceramic Society, 85, 2849-2851(2002).
[18] Wu Z H, Xu Y S, Qi D F et al. Progress in preparation and applications of Te-As-Se chalcogenide glasses and fibers[J]. Infrared Physics & Technology, 102, 102981(2019).
[19] Velmuzhov A P, Sukhanov M V, Zernova N S et al. Preparation of Ge20Se80 glasses with low hydrogen and oxygen impurities content for middle IR fiber optics[J]. Journal of Non-Crystalline Solids, 521, 119505(2019).
Get Citation
Copy Citation Text
Yantao Xu, Haitao Guo, Xusheng Xiao, Man Li, Mengmeng Yan. Fabrication and Mid-Infrared Laser Transmission Performance of Ultra-Low Loss Chalcogenide Glass Fibers[J]. Acta Optica Sinica, 2024, 44(7): 0716001
Category: Materials
Received: Dec. 28, 2023
Accepted: Jan. 23, 2024
Published Online: Apr. 11, 2024
The Author Email: Guo Haitao (guoht_001@opt.ac.cn)
CSTR:32393.14.AOS232009