Journal of Quantum Optics, Volume. 29, Issue 3, 30101(2023)
Research on Quantum Nonlocal Correlation Testing of Qubit Entangled States in Hierarchical Environment
[1] [1] FEYNMAN R P. Simulating physics with computers[J]. Int J Theor Phys, 1982, 21:467. DOI: 10.1007/BF02650179.
[2] [2] BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels[J]. Phys Rev Lett, 1993, 70:1895. DOI: 10.1103/PhysRevLett.70.1895.
[3] [3] EKERT A K. Quantum Cryptography Based on Bell′s Theorem[J]. Phys Rev Lett, 1991, 67:661. DOI: 10.1103/PhysRevLett.67.661.
[4] [4] BELL J S. On the Einstein Podolsky Rosen Paradox[J]. Physics, 1964, 1:195. DOI: 10.1103/PhysicsPhysiqueFizika.1.195.
[5] [5] ASPECT A, VGRANGIER P, ROGER G, et al. Experimental Tests of Realistic Local Theories via Bell′s Theorem[J]. Phys Rev Lett, 1981, 47:460. DOI: 10.1103/PhysRevLett.47.460
[6] [6] CLAUSER J F, HORNE M A, SHIMONY A, et al. Proposed experiment to test local hidden-variable theories[J]. Phys Rev Lett, 1969, 23:880. DOI: 10.1103/PhysRevLett.23.880
[7] [7] HARDY L. Nonlocality for two particles without inequalities for almost all entangled states[J]. Phys Rev Lett, 1993, 71:1665. DOI: 10.1103/PhysRevLett.71.1665.
[8] [8] BOSCHI D, BRANCA S, MARTINI F D, et al. Ladder proof of nonlocality without inequalities: theoretical and experimental results[J]. Phys Rev Lett, 1997. 79:2755. DOI: 10.1103/PhysRevLett.79.2755.
[9] [9] MU Y, MENG H X, ZHOU J, et al. Stronger Hardy-type paradox based on the Bell inequality and its experimental test[J]. Phys Rev A, 2019, 99:032103. DOI: 10.1103/PhysRevA.99.032103.
[10] [10] HANSON R, DOBROVITSKI V V, FEIGUIN A E, et al. Coherent dynamics of a single spin interacting with an adjustable spin bath[J]. Science, 2008, 320:352. DOI: 10.1126/science.1155400.
[11] [11] BELLOMO B, FRANCO R L, COMPAGNO G. Entanglement dynamics of two independent qubits in environments with and without memory[J]. Phys Rev A, 2008, 77:032342. DOI: 10.1103/PhysRevA.77.032342.
[12] [12] MAN Z X, XIA Y J, FRANCO R L, et al. Cavity-based architecture to preserve quantum coherence and entanglement[J]. Sci Rep, 2015, 5:13843. DOI: 10.1038/srep13843.
[13] [13] BAI X M, XUE N T, LI J Q, et al. The entropic uncertainty relation for two qubits in the cavity-based architecture[J]. Ann Phys, 2019, 531:1900098. DOI: 10.1002/andp.201900098.
[15] [15] MA T T, CHEN Y S, CHEN T, et al. Crossover between non-Markovian and Markovian dynamics induced by a hierarchical environment[J]. Phys Rev A, 2014, 90:042108. DOI: 10.1103/PhysRevA.90.042108.
[16] [16] BAN M. Violation of the quantum regression theorem and the Leggett-Garg inequality in an exactly solvable model[J]. Phy Lett A, 2017, 381:2313. DOI: 10.1016/j.physleta.2017.05.036.
[17] [17] BELLOMO B, FRANCO R L, COMPAGNO G. Non-Markovian effects on the dynamics of entanglement[J]. Phys Rev Lett, 2007, 99:160502. DOI: 10.1103/PhysRevLett.99.160502.
[19] [19] HIRSCH F, QUINTINO M T, BOWLES J, et al. Genuine hidden quantum nonlocality[J]. Phys Rev Lett, 2013, 111:160402. DOI: 10.1103/PhysRevLett.111.160402.
[20] [20] WANG Y, LI J, WANG X R, et al. Experimental demonstration of hidden nonlocality with local filters[J]. Opt Express, 2020, 28:13638. DOI: 10.1364/OE.387568.
Get Citation
Copy Citation Text
GU Peng-yu, ZENG Bai-yun, JIANG Shi-min, FAN Dai-he. Research on Quantum Nonlocal Correlation Testing of Qubit Entangled States in Hierarchical Environment[J]. Journal of Quantum Optics, 2023, 29(3): 30101
Received: Apr. 13, 2023
Accepted: --
Published Online: Apr. 7, 2024
The Author Email: