Laser & Optoelectronics Progress, Volume. 56, Issue 15, 151202(2019)

Bullet Appearance Defect Detection Based on Improved Faster Region-Convolutional Neural Network

Xiaoyun Ma1,2,3,4,5、*, Dan Zhu1,2,3,4,5, Chen Jin1,2,4,5, and Xinxin Tong1,2,4,5
Author Affiliations
  • 1 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3 University of Chinese Academy of Sciences, Beijing 100049, China
  • 4 Key Laboratory of Opto-Electronic Information Processing, CAS, Shenyang, Liaoning 110016, China
  • 5 The Key Lab of Image Understanding and Computer Vision, Shenyang, Liaoning 110016, China
  • show less
    Figures & Tables(11)
    Target detection framework based on Faster R-CNN
    Structure of region proposal network
    RoI pooling process
    Diagram of anchor proportion
    K-means++ clustering results based on different g values. (a) g=3; (b) g=4; (c) g=5; (d) g=6; (e) g=7
    Examples of bullet appearance defect dataset. (a) Mouthcrack; (b) mouthgap
    Partial test results based on improved Faster R-CNN model. (a) Mouthcrack; (b) mouthgap
    • Table 1. Experimental environment

      View table

      Table 1. Experimental environment

      NameType
      SystemLINUX64 Ubuntu14.04
      FrameCaffe
      LanguagePython,C++,Protobuf
      CPUIntel Core i7-7700
      GPUGTX1080Ti
      Memory/GB11
      RAM/GB16
      Hard disk/GB250
    • Table 2. Comparison of detection results of Faster R-CNN model based on different convolutional networks

      View table

      Table 2. Comparison of detection results of Faster R-CNN model based on different convolutional networks

      MethodmAP /%
      Faster R-CNN+ZFNet91.09
      Fater R-CNN+ VGG_CNN_M_102493.82
      Fater R-CNN+ VGG1696.37
    • Table 3. Comparison of test results of different anchor generation methods

      View table

      Table 3. Comparison of test results of different anchor generation methods

      MethodParametermAP /%
      Anchor boxesk=996.37
      K-means++g=390.03
      K-means++g=494.68
      K-means++g=597.24
      K-means++g=698.06
      K-means++g=798.02
    • Table 4. Comparison of test results of different anchor numbers

      View table

      Table 4. Comparison of test results of different anchor numbers

      MethodParameterProposalsmAP /%Speed /(frame·s-1)
      Anchor boxesk=930096.3717
      K-means++g=630098.0619
      K-means++g=610097.7528
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyun Ma, Dan Zhu, Chen Jin, Xinxin Tong. Bullet Appearance Defect Detection Based on Improved Faster Region-Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2019, 56(15): 151202

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Dec. 21, 2018

    Accepted: Mar. 5, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Xiaoyun Ma (maxiaoyun@sia.cn)

    DOI:10.3788/LOP56.151202

    Topics