Chinese Journal of Lasers, Volume. 47, Issue 9, 906003(2020)

Performance of Faster-than-Nyquist Optical Communication System under Gamma-Gamma Atmospheric Turbulence

Cao Minghua*, Wu Xin, Wang Huiqin, and Peng Qingbin
Author Affiliations
  • School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • show less
    References(27)

    [1] Wang H Q, Song L H, Cao M H et al. Compressed sensing detection of optical spatial modulationsignal in turbulent channel[J]. Optics and Precision Engineering, 26, 2669-2674(2018).

    [3] Muhammad S S, Brandl P, Leitgeb E et al. VHDL based FPGA implementation of 256-ary PPM for free space optical links. [C]∥2007 9th International Conference on Transparent Optical Networks, July 1-5, 2007, Rome, Italy. New York: IEEE, 174-177(2007).

    [5] Huang X H, Li C Y, Lu H H et al. WDM free-space optical communication system of high-speed hybrid signals[J]. IEEE Photonics Journal, 10, 7204207(2018).

    [6] Bohata J, Komanec M, Spacil J et al. 24--26 GHz radio-over-fiber and free-space optics for fifth-generation systems[J]. Optics Letters, 43, 1035-1038(2018).

    [8] Mazo J E. Faster-than-Nyquist signaling[J]. Bell System Technical Journal, 54, 1451-1462(1975).

    [9] Colavolpe G, Foggi T, Modenini A et al. Faster-than-Nyquist and beyond: how to improve spectral efficiency by accepting interference[J]. Optics Express, 19, 26600-26609(2011).

    [10] Yu T H, Zhao M J, Zhong J et al. Low-complexity graph-based turbo equalisation for single-carrier and multi-carrier FTN signalling[J]. IET Signal Processing, 11, 838-845(2017).

    [11] Xu C, Gao G J, Chen S et al. Performance of coherent detection for FTN-DFTs-OFDM signal using receiver-side quadrature duobinary shaping[J]. Optical Fiber Technology, 32, 66-70(2016).

    [12] Xiao Z P, Li B R, Fu S N et al. First experimental demonstration of faster-than-Nyquist PDM-16QAM transmission over standard single mode fiber[J]. Optics Letters, 42, 1072-1075(2017).

    [13] Jana M, Lampe L, Mitra J. Interference cancellation for time-frequency packed super-Nyquist WDM systems[J]. IEEE Photonics Technology Letters, 30, 2099-2102(2018).

    [14] Zhu Y X, Jiang M X, Chen Z Y et al. Terabit faster-than-Nyquist PDM 16-QAM WDM transmission with a net spectral efficiency of 7.96 b/s/Hz[J]. Journal of Lightwave Technology, 36, 2912-2919(2018).

    [15] Liang S Y, Qiao L, Lu X Y et al. Enhanced performance of a multiband super-Nyquist CAP16 VLC system employing a joint MIMO equalizer[J]. Optics Express, 26, 15718-15725(2018).

    [16] Liang S Y, Jiang Z H, Qiao L et al. Faster-than-Nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion[J]. IEEE Photonics Journal, 10, 7900709(2018).

    [17] Shan C, Zhou J, Guo D et al. Hartley-domain DD-FTN algorithm for ACO-SCFDM in optical-wireless communications[J]. IEEE Photonics Journal, 11, 7904509(2019).

    [19] Ke X Z, Deng L J[M]. Wireless optical communication(2016).

    [20] Zhang H B, Jiang N, Zheng Z et al. Experimental demonstration of FTN-NRZ, PAM-4, and duobinary based on 10-Gbps optics in 100G-EPON[J]. IEEE Photonics Journal, 10, 7905813(2018).

    [22] Li X L, Geng T W, Ma S et al. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation[J]. Applied Optics, 56, 4695-4701(2017).

    [24] Chen S. Research of super-Nyquist optical transmission systems and digital signal processing techniques[D]. Beijing: Beijing University of Posts and Telecom(2015).

    [25] Rusek F, Anderson J B. Constrained capacities for faster-than-Nyquist signaling[J]. IEEE Transactions on Information Theory, 55, 764-775(2009).

    [26] Wu Z J, Che H, Li S R et al. Spectral efficiency and parameter optimization analysis for faster-than-Nyquist signaling[J]. Systems Engineering and Electronics, 38, 1153-1158(2016).

    [27] Li W D, Yang H W, Yang D C[2020-01-16]. Approximation formula for the symmetric capacity of M-ary modulation [2020-01-16].http:∥www.docin.com/p-378613739.html..

    Tools

    Get Citation

    Copy Citation Text

    Cao Minghua, Wu Xin, Wang Huiqin, Peng Qingbin. Performance of Faster-than-Nyquist Optical Communication System under Gamma-Gamma Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2020, 47(9): 906003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: Jan. 17, 2020

    Accepted: --

    Published Online: Sep. 16, 2020

    The Author Email: Minghua Cao (caominghua@lut.edu.cn)

    DOI:10.3788/CJL202047.0906003

    Topics