Opto-Electronic Engineering, Volume. 34, Issue 10, 88(2007)
Unsupervised image segmentation based on DA-GMRF
[1] [1] Pappas T.An adaptive clustering algorithm for image segmentation[J].IEEE Transactions on Signal Proc,1992,40(4):901-914.
[2] [2] Liu J,Yang Y H.Multiresolution Color Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(7):689-701.
[3] [3] Andrey P,Tarroux P.Unsupervised segmentation of Markov random field modeled textured images using relaxation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(3):252-262.
[4] [4] Derin H,Elliott H.Modeling and segmentation of noisy and textured image using Gibbs random fields[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(1):39-55.
[5] [5] Geman S,Geman D.Stochastic relaxation,Gibbs distribution,and the Bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-742.
[6] [6] Li S Z.On Discontinuity-Adaptive Smoothness Priors in Computer Vision[J].IEEE Transactions on Pattern Intelligence,1995,17(6):576-586.
[7] [7] Deng Huawu,Clausi David A.Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model[J].IEEE Transactions on Geosciences and Remote Sensing,2005,43(3):528-538.
[8] [8] Xu Xin,Li Deren,Sun Hong.Multiscale MRF-based Texture Segmentation of SAR Image[J].Chinese Journal of Electronics,2004,13(4):671-675.
[9] [9] Clausi David A,Yue Bing.Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery[J].IEEE Transactions on Geosciences and Remote Sensing,2004,42(1):215-228.
[11] [11] Cerny V.Themodynamical approach to the traveling salesman problem:an efficient simulation algorithm[J].Journal of Optimization Theory and Applications,1985,45:41-51.
[12] [12] Metropolis N,Rosenbluth M N,Rosenbluth A H,et al.Equations of state calculations by fast computation machines[J].J.Chemical Physics,1953,21:1087-1091.
[13] [13] Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning[M].Boston,MA,USA:Addison-Wesley Longman Publishing Co.,Inc,1989.
[14] [14] Besag J.On the statistical analysis of dirty pictures[J].Journal of the Royal Statistical Society Series B,1986,48:259-302.
[15] [15] Kittler J,Christmas W J,Petrou M.Probabilistic relaxation for matching problems in computer vision[A].Proceedings of Forth International Conference on Computer Vision[C].Berlin,Germany:IEEE Computer Society Press,1993:666-673.
[16] [16] Chou P B,Cooper P R,Swain M J,et al.Probabilistic network inference for cooperative high and low level vision[A].Chellappa R,Jain A.Markov Random Fields:Theory and Applications[M].Boston:Academic Press,1993:211-243.
[17] [17] Derin H,Elliott H.Modeling and segmentation of noisy and textured images using Gibbs random fields[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(1):39-55.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese]. Unsupervised image segmentation based on DA-GMRF[J]. Opto-Electronic Engineering, 2007, 34(10): 88